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Abstract. We argue that Semantic Web reasoning is an ideal tool for analyzing 
gene expression profiles and the resulting sets of differentially expressed genes 
produced by high-throughput microarray experiments, especially since this 
involves combining not only very large, but also semantically and structurally 
complex data and knowledge sources that are inherently distributed on the Web. 
In this paper, we describe an initial implementation of a full-fledged system for 
integrated reasoning about biological data and knowledge using Sematic Web 
reasoning technology and apply it to the analysis of a public pancreatic cancer 
dataset produced in the Pollack lab at Stanford.  

1   Introduction and Motivation 

The recent breakthroughs in genomics have allowed new rational approaches to the 
diagnosis and treatment of complex diseases such as cancer or type 2 diabetes. The 
role of bioinformatics in this domain has become essential, not just for managing the 
huge amounts of diverse data available, but also for extracting biological meaning out 
of heterogeneous data produced by different labs using widely different experimental 
techniques. Although the completion of the sequencing of the genomes of a large 
number of organisms (including  the Human Genome) has identified the (more or 
less) complete lists of genes of these organisms, we only have a partial view of the 
complexity of the interactions among these genes. 

Thus, determining the molecular-level details of complex diseases is a challenging 
issue. Traditional genetic methods are inapplicable since, typically, there is no single 
gene responsible for the disease. Rather, a complex interplay of pathways is usually 
involved, so that many different genetic (possibly somatic) defects1 may affect the same 
pathway. Despite the large body of existing biological knowledge, even the pathways 
are only partially known and, even worse, may interact in very complex ways. 

The study of complex diseases has been revolutionized by the advent of whole-
genome measurements of gene expression using microarrays. These allow the 
determination of gene expression levels of virtually all genes of a given organism in a 
variety of different samples, for example coming from normal and diseased tissues. 

However, the initial enthusiasm related to such microarray data has been tempered 
by the difficulty in their interpretation. It has become obvious that additional available 
                                                           
1 Such as Single Nucleotide Polymorphisms (SNP), chromosomal translocations, chromosomal 

segment amplifications or deletions, etc. 
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knowledge has to be somehow used in the data analysis process. However, the 
complexity of the types of knowledge involved renders any known data analysis 
algorithm inapplicable. Thus, we need to integrate at a deep semantic level the 
existing domain knowledge with the partial results from data analysis. Semantic Web 
technology, and especially the reasoning facilities that it will offer turn out to be 
indispensable in the biological domain at all levels: 

- At the lower data access level, we are dealing with huge data- and knowledge 
bases that are virtually impossible to duplicate on a local server. A mediator-
type architecture [16] would therefore be useful for integrating the various 
resources and for bridging their heterogeneity. 

- At the level of data schemas, we frequently encounter in this domain very 
complex semi-structured data sources – accessing their contents at a semantic 
level requires precise machine-interpretable descriptions of the schemas. 

- Finally, the data and knowledge refer to complex conceptual constructions, 
which require the use of common domain ontologies for bridging the semantic 
heterogeneities of the sources. 

In this paper, we describe an initial attempt at developing a full-fledged system for 
integrated reasoning about biological data and knowledge using Semantic Web 
reasoning technology. The system is designed as an open system, able to quickly 
accommodate various data sources of virtually all types (semi-structured, textual, 
databases, etc.). At this time, we have a working system prototype that uses the state-
of-the-art XML query language XQuery [9] for implementing the wrappers to the 
Web-based sources (either in XML or possibly non-well-formed HTML), the Flora2 
[10] F-logic implementation for reasoning and a Tomcat-based implementation of the 
Web application server.  

2   The Pancreatic Cancer Dataset  

In the following we describe an application of the technology to the analysis of a  
public pancreatic cancer dataset produced in the Pollack lab at Stanford [1]. 

Despite the enormous recent progress in understanding cancer at a molecular level, the 
precise details are still elusive for many types of carcinomas. Pancreatic cancer is a 
particularly aggressive disease, with a very poor prognosis, requiring a more precise 
understanding of its molecular pathogenesis. The technological progress initiated by the 
introduction of gene expression microarrays about a decade ago has enabled large scale 
whole genome studies with the aim of identifying disease-specific genes. Although limited 
by the relatively low number of samples (due to the large costs of the technology), these 
gene expression studies have revealed a much more complex molecular-level picture than 
previously expected. Tens to a few hundreds genes were found to be differentially 
expressed in the samples analyzed, and their precise roles in the (signaling) pathways 
leading to cancer are only partially known. Even worse, it seems extremely difficult to 
discern between genetic abnormalities that play a causal role in oncogenesis and those 
that are merely side-effects. Obviously, the task of identifying new therapeutic targets 
depends essentially on being able to identify the causal details. 

The results of published studies [1,2,3] have emphasized the complexity of the 
genetic abnormalities involved in pancreatic cancer. There seem to be few, if any, 
amplifications or deletions common to all patients thus leading to a more complex 
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picture of the disease in which perturbations of distinct components of certain key 
pathways are triggered in various different ways, while leading to similar phenotypes.  

The fact that our knowledge of the various signaling pathways involved is only 
partial makes the task of identifying the precise details of oncogenesis even more 
difficult, requiring a combination of all the available data and knowledge.  

More precisely, Bashyam et al. [1] have performed simultaneous array 
Comparative Genomic Hybridization and microarray expression measurements on a 
set of 23 human pancreatic cell lines (with two additional normal-normal reference 
array-CGH measurements) using cDNA microarrays containing 39632 human cDNAs 
(representing about 26000 named human genes). Array-CGH measurements involved 
co-hybridizing Cy5-labeled genomic DNA from each cell line along with Cy3-labeled 
sex-matched normal leukocyte DNA. Expression profiling was performed with 
reference RNA derived from 11 different human cell lines. 

We retrieved the normalized intensity ratios from the Stanford Microarray 
Database [5] and used the CGH-Miner software [4] as described in [1] to identify 
DNA copy number gains and losses. Expression ratios were called significant if they 
EXPR– = 0.5. 

Since for certain microarray spots expression ratios may be poorly defined 
(mainly due to low intensities in one of the two channels), we only retained genes 
whose expression ratios were well measured in at least 14 of the 23 samples.  
Unlike Bashyam et al. who performed mean centering of the (log-)expression ratios 
of the genes (to emphasize their relative levels among samples),  we avoid mean-
centering or variance normalization of the ratios since we are interested in 
identifying systematically over/under-expressed genes, the expression level being 
important for this purpose. Finally, we constructed two lists of “common” up- and 
respectively down-regulated genes Common and Common , which we use in the 
following. 

3   The Data Sources 

The architecture of the application is presented in Figure 2 in the Appendix. The 
application uses various data and knowledge sources, ranging from semi-structured 
data to databases of literature-based paper abstracts. 

We initially integrated the following sources: 

NCBI/Gene. The e-utilities [11] interface to the NCBI Gene database [12] returns 
gene-centred information in XML format. We extracted using an XQuery wrapper 
gene symbols, names, descriptions, protein domains (originating from Pfam or CCD), 
and literature references. We also extracted the Gene Ontology (GO) [13] annotations 
of the genes, as well as the pathways2 and interactions3 in which these are known to 
be involved. 

TRED. The Transcriptional Regulatory Element Database TRED [8] contains 
knowledge about transcription factor binding sites in gene promoters. Such 
information is essential for determining potentially co-expressed genes and for linking 
them to signaling pathways. 
                                                           
2 Originating from KEGG or Reactome. 
3 Taken e.g. from BIND or HPRD. 
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Biocarta [7] is a pathway repository containing mostly graphical representations of 
pathways contributed by an open community of researchers. We have developed an 
XQuery wrapper that currently extracts the lists of genes involved in the various 
pathways. 

Pubmed. Literature references to genes and their interactions extracted from Pubmed 
abstracts [14] will also be integrated into the system. 

The above sources contain complementary information about the genes, their 
interactions and pathways, neither of which can be exploited to their full potential in 
isolation. For example, the GO annotations of genes can be used to extract the main 
functional roles of the genes involved in the disease under study. Many  
such genes are receptors or their ligands, intra-cellular signal transducers, transcription 
factors, etc. And although many of these genes are known to be involved in cancer (as 
oncogenes or tumor suppressors), the GO annotations will not allow us to determine 
their interactions and pathway membership. These can only be extracted from explicit 
interaction or pathway data-sources, such as TRED, BIND, Biocarta, etc. 

4   A Unified Model of the Data Sources 

In order to be able to jointly query the data sources, a unified model is required. We 
used the prototype system described in [17] to implement a mediator over the above-
mentioned data sources. The system uses F-logic [23] for describing the content of 
information sources as well as the domain ontology for several important reasons. 

First, although the distinctive feature of the Semantic Web is reasoning, the various 
related W3C standards are not easy to use by a reasoner, especially due to their 
heterogeneity (XML, RDF, RuleML, etc.). A uniform internal level, optimized for 
efficiency is required for supporting inference and reasoning. The architecture of our 
system therefore separates a so-called “public” level from the internal level. The 
public level refers to the data, knowledge and models exchanged on the Web and 
between applications and conforms to the current and emerging Web standards such 
as XML, RDF(S), RuleML, etc. F-logic is used at the “internal” level. 

Second, the tabling mechanism of Flora2 4 is essentially equivalent to the Magic Sets 
method [24] for bottom-up evaluation in database query engines, which, combined with 
top-down evaluation, can take advantage of the highly optimized compilation 
techniques developed for Prolog, resulting in a very efficient deductive engine. 

Moreover, F-logic combines the logical features of Prolog with the frame-oriented 
features of object-oriented languages, while offering a more powerful query language 
(allowing e.g. aggregation and meta-level reasoning about the schema). Last but not 
least, F-logic is widely used in the Semantic Web community [18,19,20]. However, 
we also consider the possibility of using Xcerpt [21] at this level. 

4.1   Mapping Rules 

Since the sources are heterogeneous, we use so-called “mapping rules” to describe their 
content in terms of a common representation or ontology. For example, we can retrieve 
direct interactions either from the gene-centred NCBI Gene database, or from TRED: 

                                                           
4 Flora2 is the F-logic implementation we use. 
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di(I):direct_interaction[gene->G1, other_gene->G2, int_type->IntType, source->'ncbi_gene',  
description->Desc, pubmed->PM] :– 

query_source('ncbi_gene_interactions', 'bashyam')@query, 
I:interaction[gene->G1, other_gene->G2, description->Desc,  

pubs->PM]@'ncbi_gene_interactions', 
if (str_sub('promoter',Desc,_)@prolog(string)) 

        then IntType = 'p-d' 
        else IntType = 'p-p'. 

di(I):direct_interaction[gene->G1, other_gene->G2, int_type->IntType, source->'tred'] :– 
query_source('tred', 'bashyam')@query, 
I:interaction[tf->G1, gene->G2]@'tred', 
IntType = 'p-d'. 

The common representation refers to direct interactions by the direct_interaction 
Flora2 object. We distinguish between two types of interactions: 

- protein-to-DNA (‘p-d’), which refers to transcription regulatory influences 
between a protein and a target gene, and 

- protein-to-protein (‘p-p’), which comprises all other types of interactions. 

The distinction is important since the gene expression data analyzed reveals only 
changes in expression levels. Thus, while the protein-to-DNA interactions could in 
principle be checked against the expression data, the protein-to-protein interactions 
are complementary to the expression data5 and could reveal the cellular functions of 
the associated proteins. 

While certain types of knowledge are more or less explicit in the sources (for 
example, the interaction type is ‘p-d’ if the description of the interaction contains the 
substring ‘promoter’), in other cases we may have to describe implicit knowledge 
about sources (i.e. knowledge that applies to the source but cannot be retrieved from it 
– for example, the TRED database contains only interactions of type ‘p-d’, but this is 
nowhere explicitly recorded in the data). 

4.2   Model Rules 

Although in principle the wrappers and the mapping rules are sufficient for being able 
to formulate and answer any query to the sources, it is normally convenient to 
construct a more complex model, that is as close as possible to the conceptual model 
of the users (molecular biologists/geneticists in our case). This is achieved using so 
called “model rules” which refer to the common representation extracted by the 
mapping rules to define the conceptual view (model) of the problem. 

For example, we may want to query the system about “functional” interactions 
(which are not necessarily direct interactions). More precisely, a functional 
interaction between two genes can be either due to a direct interaction, or to the 
membership in the same pathway, or to their co-reference in some literature abstract 
from Pubmed: 

pi(I1,I2):pathway_interaction[gene->G1, other_gene->G2, int_type->IntType,  
   source->[Src1,Src2], pathway->P, role(G1)->R1, role(G2)->R2] :  

I1:pathway[name->P, gene->G1, gene_description->GN1, role(G1)->R1, source->Src1], 
I2:pathway[name->P, gene->G2, gene_description->GN2, role(G2)->R2, source->Src2], 
interaction_type(R1,R2,IntType). 

                                                           
5 i.e. cannot be derived from it. 
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interaction_type(target_gene, target_gene, coexpression) :  !. 
interaction_type(target_gene, Role2, transcriptional) :  Role2 \= target_gene, !. 
interaction_type(Role1, target_gene, transcriptional) :  Role1 \= target_gene, !. 
interaction_type(Role1, Role2, same_pathway) :  Role1 \= target_gene, Role2 \= target_gene, !. 

fi(I):functional_interaction[gene->G1, other_gene->G2, int_type->IntType, source->Src] :  
I:direct_interaction[gene->G1, other_gene->G2, int_type->IntType, source->Src] 
; I:pathway_interaction[gene->G1, other_gene->G2, int_type->IntType, source->Src] 
; I:literature_interaction[gene->G1, other_gene->G2, int_type->IntType, source->Src].   

We may also define classes of genes based on their GO annotations. For example, 
the following rules extract receptors, ligands and respectively transcription regulators: 

r(I):gene_role[gene->G, category->C, role->receptor, source->Src] :  
I:gene_category[gene->G, category->C, source->Src], 
str_sub('receptor',C,_)@prolog(string), 
str_sub('activity',C,_)@prolog(string). 

r(I):gene_role[gene->G, category->C, role->ligand, source->Src] :  
I:gene_category[gene->G, category->C, source->Src], 
str_sub('receptor',C,_)@prolog(string), 
( str_sub('binding',C,_)@prolog(string) ; 
  str_sub('ligand',C,_)@prolog(string) ). 

r(I):gene_role[gene->G, category->C, role->transcription_regulator, source->Src] :  
I:gene_category[gene->G, category->C, source->Src], 
( str_sub('DNA binding',C,_)@prolog(string) ; 
  str_sub('transcription',C,_)@prolog(string) ). 

Such classes of genes can be used to “fill in” templates of signaling chains, such as 
ligand  receptor  signal transducer …  transcription factor, which could in principle be 
reconstructed using knowledge about interactions: 

generic_signaling_chain_interaction(ligand, receptor, 'p-p'). 
generic_signaling_chain_interaction(receptor, signal_transducer, 'p-p'). 
generic_signaling_chain_interaction(signal_transducer,  signal_transducer, 'p-p'). 
generic_signaling_chain_interaction(signal_transducer, transcription_factor, 'p-p'). 
generic_signaling_chain_interaction(transcription_factor, target_gene, 'p-d'). 
generic_signaling_chain_interaction(modulator, receptor, 'p-p'). 
generic_signaling_chain_interaction(modulator, signal_transducer, 'p-p'). 
generic_signaling_chain_interaction(modulator, transcription_factor, 'p-p'). 

signaling_chain(sig_chain(G), G, Role) :   

Role = receptor, 
_:gene_role[gene->G, role->Role]. 

signaling_chain(S, G2, Role2) :   

signaling_chain(S, G1, Role1), 
generic_signaling_chain_interaction(Role1, Role2, IntType), 
_:direct_interaction[gene->G1, other_gene->G2, int_type->IntType], 

   _:gene_role[gene->G2, role->Role2]. 

Note that the signaling chains are initialized with receptors, since these are the 
starting points of signaling cascades and are typically affected in most cancer samples 
(including our pancreatic cancer dataset). 

In our cancer dataset analysis application, the transcription factors play an 
important role, since their gene targets’ co-expression can reveal the groups of genes 
that are differentially co-regulated in the disease: 
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tf_binding(G1, G2, IntType) :  

_:gene_role[gene->G1, category->C1, role->transcription_regulator], 
 _:direct_interaction[gene->G1, other_gene->G2, int_type->IntType, source->Src],  
_:gene_list[gene->G2, list->common]. 

Figure 1 below shows the graph generated by the system in response to the 
following query (Cytoscape [22] is used for visualization): 

?- show_graph(${tf_binding(TF,G,IntType)}, [TF,G,IntType]). 
 

 

Fig. 1. Transcription regulatory relationships among “common” genes in the Bashyam et al. 
pancreatic cancer dataset (arrows: ‘p-d’, undirected edges: ‘p-p’ interactions) 
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5   Conclusions and Future Work  

Our initial experiments confirmed the feasibility of our approach and lead to a number 
of interesting observations. Although all processing was performed in-memory, the 
system was able to deal with the complete data-sources mentioned above for the 
selection of “common” genes (359 genes): 

- NCBI Gene interactions: 2239 
- TRED interactions: 10717 
- Biocarta gene to pathway membership relations: 5493 
- NCBI gene to pathway membership relations: 622 
- Other pathway membership relations: 5095 
- GO annotations: 2394 
- Protein domains: 614. 

From a certain perspective, the approach is a combination of remote-source 
mediation and data-warehousing. As in a mediation approach, only the relevant 
entries of remote data sources are retrieved, but these are stored in a local 
warehouse by the wrappers (in XML format) to avoid repetitive remote accesses 
over the Web. 

Such exploratory queries involving large datasets and combinatorial reasoning 
typically have slow response times (typically seconds to minutes if the relevant 
sources have been accessed previously and are therefore in the local warehouse; if 
not, response times depend on the size of the data to be transferred from remote 
sources and on the connection speed). However, as far as we know, other existing 
approaches are either slower6 or cannot deal with such datasets at all. 

Such exploratory queries involving large datasets and combinatorial reasoning 
typically have slow response times (typically seconds to minutes if the relevant 
sources have been accessed previously and are therefore in the local warehouse; if 
not, response times depend on the size of the data to be transferred from remote 
sources and on the connection speed). However, as far as we know, other existing 
approaches are either slower or cannot deal with such datasets at all. 

Since reasoning in general is based on combining knowledge, Semantic Web 
reasoning will have to deal with combining knowledge distributed on the Web. The 
distributed nature of relevant knowledge in turn places significant limitations on the 
reasoners, due to the limited data transfer speeds of the current Web. Thus, it appears 
that future Semantic Web reasoning systems will be placed between two extremes, 
depending on the scope of the knowledge relevant to a query. At one extreme, there 
will be general, Google-like systems that will use local warehouses of the entire 
Web for answering semantic queries. At the other extreme, Web browsers will be 
enhanced with (semantic) reasoning capabilities, but the reasoning will be 
performed on a single Web page only. Our approach comes somehow in between 
the two extremes: the relevant and frequently used sources and Web pages are 
stored in a local warehouse allowing more sophisticated queries than in the 
“browser only” setting.  
                                                           
6 In the case of systems based on plain Prolog (with no tabling or other similar optimizations). 
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We have also tried to implement fragments of the above scenario using XQuery 
not just for the wrappers, but also for the integrated model. (In our experiments, we 
have used the qizxopen [9] implementation of XQuery. The general idea consisted in 
implementing the reasoning rules as XQuery functions.) Although the efficiency and 
memory consumption are comparable to those of our F-logic-based system, using a 
procedural query language like XQuery posed significant problems. For example, the 
following XQuery function retrieves the transcription regulatory interactions 
involving common genes: 

declare function local:select-NCBI_Gene-tranreg_interactions_common($NCBI_Gene_common 
as node(), $common_genes as xs:string  *) as node() * 
{ 
<RESULTS> 
{ 

for $int in $NCBI_Gene_common//interaction, 
     $g1 in $common_genes[. = string($int/gene)], 
     $g2 in $common_genes[. = string($int/other_gene)] 
let $g := $int/../.. 
where contains(lower-case(string($g/Gene_Ontology/GO_category/GO_annot/GO)), 
"transcription") 
return 
<transcription_regulator_interaction_common>{$int/*}</transcription_regulator_interaction_com
mon> 

} 
</RESULTS> 
} 

Note the rather complex way of performing simple operations such as joins. But 
even if we ignore such syntactic complications, we would have to write a separate 
XQuery function for each possible instantiation pattern of a given rule head, leading 
to a cumbersome and hard to modify program (a modification of a rule would require 
synchronized modifications in all associated XQuery functions). 

Finally, there are certain technical issues whose improvement would lead to a 
significantly better Semantic Web reasoning system: 

- Query planning 
- Streaming 
- Source capabilities 
- Support for (semi-)automated development of wrappers. 

In the case of large data sources, as in the biological domain (giga- to terrabytes), it 
is obviously impossible to retrieve the entire content of such sources before starting 
reasoning. Also, if additional knowledge is available about the sources, some source 
accesses may be avoided altogether. Therefore, dealing with information sources 
requires a certain form of query planning, i.e. the ability of constructing and 
reasoning about alternative sequences of source accesses (plans) before actually 
querying these sources. Also, streaming the query responses may allow starting 
processing before the entire response is retrieved. 

Since queries can involve several different information sources, they will have to 
be to be split into sub-queries that can be treated by the separate information 
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sources. Since each information source may have its own (Web accessible) 
interface, we need to explicitly represent the capabilities of these interfaces. As 
opposed to traditional database query languages, such Web sources provide only 
limited query capabilities. For example, a specific Web interface may allow only 
certain types of selections and may also require certain parameters to be inputs (i.e. 
known at query time). These source capabilities would have to be taken into 
account during query planning. 

From the biological point of view, the system has proved to be very useful for 
creating a global “picture” of the interactions among the genes differentially 
expressed in pancreatic cancer. The large number (359) of these genes 7 would have 
made the task extremely difficult, if not impossible for a human exploration of the 
data sources. For example, note the involvement of: 8 

- the Epidermal Growth Factor Receptor EGFR, known to be involved in many 
cancers  

- BCL2, a gene involved in the apoptotic response of cells (note that the down-
regulation of BCL2 in pancreatic cancer is quite unusual for an anti-apoptotic 
gene, since it is normally over-expressed in other tumor types [15]) 

- the transcription factors FOS, MYB, LEF1 
- the metalloproteinases MMP3, and MMP7 (involved in tissue remodeling, 

invasion, tumor progression, metastasis and tumor initiation – in the case of 
MMP3) 

- the nuclear receptor PPARG, a regulator of differentiation known to be 
involved in cancer and PPARGC1A, its coactivator. 

The biological interpretation of the results is outside the scope of this paper and 
will be discussed elsewhere in a specialized paper. 
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Fig. 2. The architecture of the pancreatic cancer dataset analysis application 
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