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Abstract. The Semantic Web should enhance the current World Wide Web 
with reasoning capabilities for enabling automated processing of possibly dis-
tributed information. In this paper we describe an architecture for Semantic 
Web reasoning and query answering in a very general setting involving several 
heterogeneous information sources, as well as domain ontologies needed for of-
fering a uniform and source-independent view on the data. Since querying a 
Web source is very costly in terms of response time, we focus mainly on the 
query planner of such a system, as it may allow avoiding the access to query-
irrelevant sources or combinations of sources based on knowledge about the 
domain and the sources. 

Taking advantage of the huge amount of knowledge implicit and distributed on the 
Web is a significant challenge. The main obstacle is due to the fact that most Web 
pages were designed for human-centred browsing rather than being machine-
processable. In addition to static HTML pages the Web currently offers online access 
to a large number information resources, such as databases with a Web interface. But 
real-life applications frequently require combining the information from several such 
resources, which may not have been developed with this interoperability requirement 
in mind. Thus, a large amount of knowledge is implicit, heterogeneously distributed 
among various resources and thus hard to process automatically.  

The recent developments towards a “Semantic Web” should help address these 
problems. Being able to explicitly represent domain-specific knowledge in the form of 
ontologies, should allow reasoning about such machine-processable Web pages. 

The emergence of standards for data markup and interchange such as XML and for 
representing information about resources and their semantics (such as RDF and RDF 
Schema) can be seen as a first step in the transition towards a Semantic Web. How-
ever, the vast majority of Web pages still conform to the HTML standard, which only 
controls their visual aspects rather than their informational content. Extracting the 
informational content from such pages which essentially contain free text is a difficult 
practical problem. The Resource Description Framework (RDF) has been designed to 
complement such human-oriented text with machine-processable annotations. A large 
number of prototype systems able to read and reason about such annotations have 
been developed (TRIPLE [7], Metalog [20], SiLRI [8], Ontobroker [9]). However, 
currently only a very small minority of Web pages have RDF annotations. Moreover, 
existing annotations tend to refer to basic features such as document author, creation 
date, etc., but do not duplicate the information content of the page. 



On the other hand, a large number of information sources have a Web interface and 
could be the building blocks of complex applications, were it not for the unavoidable 
semantic mismatch between such resources developed by different people. Such Web 
interfaces produce pages with a partially stable structure, so that their content can be 
automatically extracted using wrappers, thus replacing human annotation (which is a 
significant bottleneck in practice).  

Dealing with information sources rather than a fixed set of Web pages may pose 
additional problems. For example, systems like TRIPLE read all the relevant (RDF) 
annotations before reasoning about them. In the case of large data sources however, it 
is obviously impossible to retrieve the entire content of such sources before starting 
reasoning. Also, if additional knowledge is available about the sources, some source 
accesses may be avoided altogether. Therefore, dealing with information sources re-
quires a certain form of query planning, i.e. the ability of constructing and reasoning 
about alternative sequences of source accesses (plans) before actually querying these 
sources. Also, streaming the query responses may allow starting processing before the 
entire content of the information source is retrieved. 

In this paper we present an approach to such more complex Semantic Web scenar-
ios, involving the integration of heterogeneous resources using rules and ontologies. 

The most significant problem faced when trying to combine several resources is re-
lated to their heterogeneity. This heterogeneity can be either structural (different 
schemas), or semantic (the same entity can be represented using different terms from 
different vocabularies). Integrating such resources can be achieved by mapping them 
(both their schemas and their content) to a common “knowledge” level, at which their 
interoperation is straight-forward. This common level involves not just a common 
(domain-specific) vocabulary, but also formal (machine processable) descriptions of 
the terms of this vocabulary, as well as the relationships between them, which form a 
so-called ontology. A mediator architecture [22] can be used for query answering. 

A researcher specialized in Knowledge Representation and Reasoning (KRR) 
might be very disappointed by current Web technology, which: 
- involves to a large extent HTML pages in mostly free text (not machine processable) 
- the knowledge is not well structured 
- there is virtually no support for reasoning. 

Thus, since current state of the art in Natural Language Processing does not allow 
extracting the deep semantics of free text, the temptation may be very high to change 
everything. However, as it isn’t easy to impose a radically new (even if better) Web 
standard, we adopt an evolutionary rather than revolutionary approach and conform as 
much as possible to current and emerging Web standards. 

In the following we concentrate mainly on the query planning component of a me-
diator-based Semantic Web architecture – other important issues such as wrappers and 
especially ontologies deserve a more detailed discussion, but which is outside the 
scope of this paper. 



1 The architecture: public and private levels 

The distinctive feature of the Semantic Web is reasoning. However, the various W3C 
standards related to the (Semantic) Web are not easy to use by a reasoner, especially 
due to their heterogeneity (XML, RDF, RuleML, etc.). A uniform internal level would 
be much more appropriate for supporting inference and reasoning. The architecture of 
our system therefore separates a so-called “public” level from the internal level. The 
public level refers to the data, knowledge and models exchanged on the Web and 
between applications and must conform to the current and emerging Web standards 
such as XML, RDF(S), RuleML, etc. 

1.1 The internal representation 

We use F-logic [12] for describing the content of information sources as well as the 
domain ontology for several important reasons. First, a logic-based language is not 
only declarative, but also offers support for reasoning. However, a Prolog-like syntax 
using predicates with a fixed number of arguments and a position-oriented argument 
access is not well suited for dealing with the semi-structured data available on the 
Web. On the other hand, F-logic combines the logical features of Prolog with the 
frame-oriented features of object-oriented languages, while offering a more powerful 
query language (allowing e.g. aggregation and meta-level reasoning about the 
schema). Last but not least, F-logic is widely used in the Semantic Web community 
[7,18,8,9].  

In the following (and throughout the whole paper) we use the term “predicate” to 
denote an F-logic molecule, such as X:c[a1−>Y1, …]. 

While the data content of an information source can be represented by a number of 
so-called source predicates s, the user might prefer to have a uniform interface to all 
the sources instead of directly querying the sources s. In fact, she may not even want 
to be aware of the structure of the information sources. Therefore, the mediator uses a 
uniform knowledge representation language in terms of so-called "model predicates", 
which represent the user's perspective on the given domain and refer to concepts and 
terms of an associated domain ontology. 

There are two main viewpoints on representing sources and their interactions: 
"Global as View" (GAV) and "Local as View" (LAV) [16]. The query planner pre-
sented in this paper can deal with both GAV and LAV approaches. However, we en-
courage the use of LAV, since it spares the knowledge engineer the effort of explicitly 
determining and representing the source interactions. 

1.2 Source predicates, model predicates and description rules 

The content of the various Web information sources is represented by so-called source 
predicates. For a uniform and integrated access to the various sources these are de-
scribed (at the mediator level) in terms of so-called model predicates.  



More precisely, we distinguish between content predicates and constraint predi-
cates. 

Content predicates (denoted in the following with p, q) are predicates which di-
rectly or indirectly represent the content of information sources. They can be either 
source predicates or model predicates.  

Source predicates (denoted with s) directly represent the content of (part of) an in-
formation source (for example, the content of a Web page or the answer returned by a 
Web service).  

Model predicates (denoted with b) are used to describe the “global model”, includ-
ing the domain ontology and the information content of the sources in terms of this 
ontology.  

As opposed to content predicates, constraint predicates (denoted by c) are used to 
express specific constraints on the content predicate descriptions.  

For example, a source s containing information about underpaid employees (with a 
salary below 1000), would be described as:   

E:s[name−>N, salary−>S] −−>  E:employee[name−>N, salary−>S], S<1000. 

Constraint predicates can be either internal (treatable internally by the query engine 
of the source), or external (constraints that can only be verified at the mediator level, 
for example by the built-in constraint solvers of the host CLP environment). Con-
straints treatable internally by the sources can be verified at the source level (by the 
query engines of the sources), but they are also propagated at the mediator (CLP) 
level. Constraints treatable only externally need to be both verified and propagated at 
the mediator level. 

A complete description of the source predicates in terms of model predicates is nei-
ther possible nor useful, since in general there are too many details of the functioning 
of the application. Thus, instead of complete (iff) descriptions, we shall specify only 
approximate (necessary) definitions of the source predicates in terms of model predi-
cates (thus, only the relevant features of the sources will be encoded).  

In the following, we use a uniform notation for the domain and source description 
rules: 

Antec, Constra → Conseq, Constrc         (dr) 

where Antec and Conseq are conjunctions of content predicates, while Constra and 
Constrc are conjunctions of constraints. Variables occurring in the consequent but not 
in the antecedent are implicitly existentially quantified. As in Prolog and F-logic, all 
other variables are implicitly universally quantified.  

Description rules are necessary definitions of (combinations of) source or model 
predicates in terms of model predicates and constraints. (Source descriptions are spe-
cial cases of description rules where the antecedent contains only source predicates. 
Integrity constraints are description rules with only constraints – typically 'fail' – in 
the consequent.) 



1.3 Querying the sources: wrappers 

While the traditional Web was designed mainly for browsing, the Semantic Web 
should enable automated processing of Web sources. A Semantic Web system should 
therefore be able to deal not just with static Web pages (in various formats such as 
HTML, XML), but also with dynamically generated pages as well as Web services.  

While the semantics of static Web pages is encoded using static annotations (e.g. in 
RDF) the information content of dynamically generated Web pages needs to be ex-
tracted by automatic wrappers. These have to be quite flexible, i.e. able to deal with 
XML files, or even possible non-well-formed HTML. Due to its wide spread use 
worldwide, we currently employ XQuery for implementing our wrappers (we also use 
tidy 1 to preprocess non-well-formed HTML sources). 

2 Ontologies and mapping rules 

A key component in a SW application is a domain ontology, used by a certain com-
munity to enable sharing and exchange of knowledge in a particular domain. Due to 
the heterogeneous nature of the sources, mapping rules from the various sources to the 
common ontology are needed for obtaining a unified view of these sources (see Sec-
tion 4 below for examples).  

OWL (http://www.w3.org/2004/OWL/) has recently emerged as a de-facto standard 
for Web ontologies. Since OWL is a description logic-based extension to RDF(S), it 
provides useful inference services, mainly for checking the consistency of a schema as 
well as for subsumption testing. However, description logics (DL) with tractable in-
ference services tend to have limited expressiveness, so that they are closer to a dy-
namic type checker rather than to a more expressive reasoner. A large part of the se-
mantics encoded in such an OWL ontology thus resides “in the names” rather than in 
the formulas themselves, thereby making the usefulness of the reasoning services 
questionable w.r.t. the limited expressiveness and the computational overhead (dealing 
with instances in current DL implementations is especially inefficient). Also, most 
real-life ontologies require the use of rules and domain-specific constraints for sup-
plementing the limited expressiveness of description logics. However, combining DLs 
with rules is highly non-trivial, both theoretically and from the point of view of tracta-
bility [18]. A pragmatic approach would avoid the computational complexities of a 
complete DL reasoner by implementing a fast, albeit incomplete set of DL propaga-
tion rules. 

We currently employ Protégé2, a widely used Ontology development tool. Ontolo-
gies are exported in RDF(S) format and automatically converted to the internal (F-
logic) format. As discussed above, additional rules may be needed to extend the ex-
pressiveness of RDF(S).  

                                                           
1 http://tidy.sourceforge.net/ 
2 http://protege.stanford.edu 



3 Reasoning and Query Planning 

Since querying a Web source is extremely costly in terms of response time, every 
possible optimization that might avoid accessing irrelevant sources should be at-
tempted. The knowledge available about a particular source or combination of sources 
may imply the inconsistency of some potential query plan even before accessing the 
sources. The purpose of the query planner is to avoid executing such inconsistent 
plans and possibly to use additional cost measures for ranking plans. 

The majority of Semantic Web implementations using F-logic [7,18,8,9] retrieve 
the content of all the sources before query answering. However, in applications in 
which there are alternative plans for a given query, some of these plans may be incon-
sistent and - for efficiency - the associated sources should not be accessed. This can-
not be achieved simply by the normal F-logic query answering mechanism and re-
quires some form of meta-interpretation.  

Query planning amounts to unfolding the query in terms of sources and propagat-
ing the relevant constraints to eliminate the inconsistent plans. Since this type of rea-
soning is performed before accessing the sources, it can be viewed as an abductive 
procedure [14] in which the source predicates play the role of abducibles. 

Due to their flexibility and declarative nature, Constraint Handling Rules (CHRs) 
[10] represent an ideal framework for implementing the reasoning mechanism of the 
query planner.  

Constraint Handling Rules (see [10] for more details) represent a flexible approach 
to developing user-defined constraint solvers in a declarative language. As opposed to 
typical constraint solvers, which are black boxes, CHRs represent a 'no-box' approach 
to CLP.  

CHRs can be either simplification or propagation rules.  
A simplification rule Head <=> Guard | Body replaces the head constraints by the 

body provided the guard is true (the Head may contain multiple CHR constraint at-
oms).  

Propagation rules Head ==> Guard | Body add the body constraints to the con-
straint store without deleting the head constraints (whenever the guard is true). A 
third, hybrid type of rules, simpagation rules Head1 \ Head2  <=> Guard | Body re-
place Head2 by Body (while preserving Head1) if Guard is true. (Guards are optional 
in all types of rules.) 

CHRs allow us to combine in an elegant manner the backward reasoning necessary 
for implementing query unfolding with the forward propagation of abducibles and 
constraints. 

A description rule of the form (dr) will be encoded in CHR using 
•  goal regression rules: for reducing queries given in terms of model predicates to 

queries in terms of source predicates, 

G Conseq :- G Antec, Constra           (b) 

•  propagation rules: for completing (intermediate) descriptions in order to allow the 
discovery of potential inconsistencies. 



H Antec  ==>  Constra  |  H Conseq, Constrc          (f) 

In our CHR embedding of the abductive procedure we use two types of constraints, 
Gp and Hp, for each predicate p. While Hp represents facts explicitly propagated 
(abduced), Gp refers to the current closure of the predicate p (i.e. the explicit defini-
tion of p together with the explicitly abduced literals Hp).  

While propagating Hp amounts to simply assuming p to hold (abduction), propa-
gating Gp amounts to trying to prove p either by using its definition def(p), or by reus-
ing an already abduced fact Hp. In fact, our description rules can be viewed as a gen-
eralization of abductive logic programs with integrity constraints interpreted w.r.t. the 
‘propertyhood view’3.  

A set of subgoals in terms of source predicates (induced by backward chaining 
from the user query using the goal regression rules) may not necessarily be consistent. 
Applying forward propagation rules ensures the completion ("saturation") of the (par-
tial) query plan and enables detecting potential conflicts before actually accessing the 
sources. 

Constra and Constrc in (f) represent constraint predicate calls, for which the associ-
ated constraints solvers are assumed to be available. The occurrence of Constra in the 
guard ensures that the consequent is propagated only if Constra hold. 

Source and domain models are described using rules of the form (dr), which are 
then automatically translated by the system into CHR goal regression and propagation 
rules (b) and (f). The following additional problem-independent rules (gh) and (re) 
are used for obtaining the complete CHR encoding of a model. 
•  a CHR simpagation rule4 for matching a goal Gp with any existing abduced facts 

Hp:      

Hp(X1) \  Gp(X2)  <=>  X1=X2  ;  X1≠X2, Gp(X2).             (re) 

This rule should have a higher priority than the unfolding rule in order to avoid re-
achieving an already achieved goal. Note that, for completeness, we are leaving 
open the possibility of achieving Gp(X2) using its definition or reusing other ab-
duced facts. 

•  a  rule taking care of the consistency between goals and facts that simply hold 
(since goals will be achieved eventually, they also have to hold):    

Gp ==> Hp                                      (gh) 

We have already mentioned the fact that we have to distinguish between goals in-
volving a given predicate p (which will be treated by a mechanism similar to the nor-
mal Prolog backward chaining mechanism) and the instances Hp of p, which trigger 
forward propagation rules. Operationally speaking, while goals Gp are "consumed" 
during goal regression, the fact that p holds should persist even after the goal has been 
                                                           
3 The detailed presentation of the semantics is outside the scope of this paper and will be pur-

sued elsewhere. Briefly, the goal regression rules make up the program P, the sources are re-
garded as (temporary) abducibles A, while the forward propagation rules play the role of the 
ALP integrity constraints I. Our notion of integrity constraints is however more general than 
that used in ALP. 

4 The rule is more complicated in practice, due to implementation details.  



achieved, to enable the activation of the forward propagation rules of p. Note that rule 
(gh) should have a higher priority than (b) to allow goals p to propagate Hp before 
applying the goal regression rules for p.  

Certain forward propagation rules (f) may propagate facts that may never be in-
volved (directly or indirectly) in conflicts. These facts may be very useful to the end 
user in certain applications, especially whenever the user would like to see all the 
known facts about the instances returned by the query. However, in other applications, 
we may wish to refrain from propagating such facts that may never lead to an inconsis-
tency (detected by an integrity constraint). In this case, we perform a static depend-
ency analysis of the rules, and generate forward propagation rules (f) only for predi-
cates that may propagate an inconsistency. 

4 An example  

In this paper, we consider a hardware configuration problem as a typical example. A 
component integrator selling customized computer configurations may use compo-
nents from several component providers, while trying to satisfy a set of compatibility 
and user constraints. This problem has many typical features of the Semantic Web:  
- it involves distributed and dynamically changing information sources (the com-

ponent catalogs of the different providers available via Web interfaces) 
- the information  is semantically heterogeneous, requiring a domain ontology for a 

uniform access 
- the domain involves complex compatibility constraints between components, 

requiring constraint propagation during query planning 
- there are several alternative sources for some given component, which makes 

query planning necessary. 
Here we consider just a fragment of this hardware configuration domain, in order to 

emphasize the main features of our architecture. Assume we have two main compo-
nent providers, or vendors, flamingo and oktal. (Since their catalogs are accessible via 
the Web in HTML format, a wrapper is used for extracting the relevant information 
from these Web pages.) A user query may ask for a system with an upper bound on 
the total price. Here we just concentrate on a “simple system” containing just a moth-
erboard and a processor. Of course, the two components must satisfy a compatibility 
constraint (e.g. one should not attempt to use an AMD processor on an Intel-Pentium 
compatible motherboard). 

Since the sources are heterogeneous, we first use so-called “mapping rules” to de-
scribe their content in terms of the ontology. For example, motherboards sold by fla-
mingo are mapped onto the ontology concept motherboard (note that here we have a 
trivial mapping of all slots, with an additional m_vendor slot recording the name of 
the vendor): 5 

                                                           
5 In the following, we use the more concise F-logic syntax for rules. As already discussed 

above, the actual syntax will involve an XML encoding of a rule markup language, such as 
RuleML (http://www.ruleml.org) or Xcerpt [4].  



Mb:fl_motherboard[A−>X] −−> Mb:motherboard[A−>X,m_vendor−>flamingo]    (r1) 

Any additional knowledge about the content of the sources may be very useful dur-
ing query planning for discarding inconsistent plans even before accessing the 
sources. For example, we may know a lower bound for the price of a flamingo moth-
erboard. We may also know that flamingo distributes only intel and msi boards. This 
is specified using the following source description rules: 

Mb:fl_motherboard[m_price−>P] −−> P ¥ 70.       (ic1) 
Mb:fl_motherboard[brand−>Br] −−> member(Br, [intel, msi]).     (ic2) 

We have similar rules for oktal motherboards, as well as for processors (available 
also from both flamingo and oktal): 

Mb:okt_motherboard[A−>X] −−> Mb:motherboard[A−>X, m_vendor−>oktal]. (r2) 
Mb:okt_motherboard[m_price−>P] −−> P ¥ 70.       (ic3) 
Mb:okt_motherboard[brand−>Br] −−> member(Br, [gigabyte, msi]).    (ic4) 

Pr:fl_processor[A−>X] −−> Pr:processor [A−>X, p_vendor−>flamingo].     (r3) 
Pr:fl_processor[p_price−>P] −−> P ¥ 150.       (ic5) 

Pr:okt_processor[A−>X] −−> Pr:processor[A−>X, p_vendor−>oktal].     (r4) 
Pr:okt_processor[p_price−>P] −−> P ¥ 150.       (ic6) 

Note that the source descriptions (ic1), (ic2), (ic3), (ic4), (ic5) and (ic6) express 
knowledge about the content of the sources. (These descriptions could either be 
provided by the knowledge engineer or could be automatically retrieved from 
previous source accesses.) 

However, answering queries frequently requires knowledge about the sources that 
cannot be inferred from their content alone. For example, oktal offers discounts for 
purchases over a given threshold, while flamingo does not: 

oktal:vendor[name−>oktal, discount−> 0.1, discount_threshold−>200].     (r5) 
flamingo:vendor[name−>flamingo,  discount−> 0, discount_threshold−>0].     (r6) 

The domain ontology encodes our knowledge about this particular domain, such as 
the concept hierarchy, descriptions of slots/attributes (type, cardinality constraints, 
etc.), and any additional description rules involving these concepts. For example, 
motherboards and processors are sub-concepts of component: 

motherboard :: component. 
processor :: component. 

For an example of an ontology description rule, we may describe a simple system 
as a set of matching components, such as a motherboard and a processor. (Note the 
compatibility constraint between motherboard and processor: ‘Pr.id = 
Mb.supported_CPU’.) 

Mb:motherboard, Pr:processor, Pr.id = Mb.supported_CPU  −−>      (r7) 
X:system[motherboard−>Mb, processor−>Pr]. 



To show the functioning of the query planner, we consider the following user query 
which asks for a system with an upper bound of 210 on the (possibly discounted) 
price: 

?- S:system[motherboard−>Mb[brand = gigabyte], processor−>Pr],      (q1) 
compute_discounted_price(S, S_price), S_price § 210.                                 

For simplicity, the computation of the discounted price is performed by com-
pute_discounted_price(S, S_price). 

The query is answered by first invoking the query planner, and subsequently exe-
cuting the resulting plans. As discussed previously, query planning unfolds the query 
in terms of source calls while propagating constraints with the purpose of discarding 
the inconsistent plans before the actual source accesses. Note that constraint propaga-
tion is interleaved with query unfolding, so that inconsistencies are detected as early 
as possible. 

In our example, query planning starts by unfolding the query (q1) to the following 
subgoals and constraint (as discussed previously, G stands for ‘goal’, while H stands 
for ‘holds’): 

GS:system[motherboard−>Mb[brand = gigabyte], processor−>Pr]      (g1) 
Gcompute_discounted_price(S, P)         (g2) 
S_price § 210            (c1) 

Then (g1) will be unfolded with (r7-B) 6 to: 

GMb:motherboard[brand = gigabyte]         (g3) 
GPr:processor           (g4) 

Since motherboards can be acquired either from flamingo or from oktal, (g3) will 
be unfolded first with (r1-B) to the following (we first try to acquire the motherboard 
from flamingo): 

GMb:fl_motherboard[brand−>gigabyte, m_price−>MP, …]      (g5) 

This will propagate (with rule (gh))  HMb:fl_motherboard[brand−>gigabyte, 
m_price−>MP,…]  which in turn will activate (r1-F) and propagate 
HMb:motherboard[m_vendor−>flamingo, brand−>gigabyte, …].         (h1) 

But now, (h1) will trigger the (ic2) integrity constraint, which fails because the re-
quired brand for the motherboard (gigabyte) is not included in the list of distributed 
brands of the vendor flamingo. 

Alternatively, we could obtain a motherboard from oktal, i.e. unfold 
GMb:motherboard (g3) with (r2-B) to:  

GMb:okt_motherboard[brand−>gigabyte, m_price−>MP, …]      (g5) 

                                                           
6 (ri-B) is the goal reduction rule (backward version) of the rule (ri), while (ri-F) is the associ-

ated forward propagation rule. 



HMb:okt_motherboard[brand−>gigabyte, m_price−>MP, …] (h2)  
is propagated with rule (gh). In this case, (r2-F) will propagate 
HMb:motherboard[m_vendor−>oktal, brand−> gigabyte, …].         (h3)  

(h2) will trigger (ic2), which will be consistent because the brands known to be dis-
tributed by oktal are gigabyte and msi. (h3) will also trigger (ic3) and propagate the 
price constraint Mb.m_price ¥ 70  (c2). 

Having selected a consistent source for the motherboard, we now consider selecting 
a processor. The goal (g2) GPr:processor will be first unfolded using (r3-B) to: 

GPr:fl_processor[p_price−>PP,…]         (g6) 

and will propagate with (gh) and (r3-F): 

HPr:fl_processor[p_price−>PP]         (h4) 

which will trigger (ic5) and propagate the price constraint   Pr.p_price ¥ 150.     (c3) 
Then the next goal, Gcompute_discounted_price(S, S_Price) (g2), is unfolded and 

partially evaluated. For the simplicity of the presentation, we do not present here all 
the intermediate steps. Briefly, although at query planning time the prices of the com-
ponents are not yet known, we can nevertheless propagate the constraints (c2) and (c3) 
and thus obtain a lower bound on S_price. 

More precisely, since we have different vendors for the two components 
(Pr.p_vendor = flamingo, Mb.m_vendor = oktal), any potential discounts will be ap-
plied separately to each component. But flamingo doesn’t offer discounts and the 
discount threshold for oktal is too high (200) to be applicable. Therefore, the system 
price will be: S_price = Pr.p_price + Mb.m_price ¥ 220 (due to (c3) and (c2)), which 
is inconsistent with the (c1) constraint S_price § 210, so the combination of an oktal 
motherboard and a flamingo processor will be rejected. 

Alternatively, we could acquire the processor from oktal, i.e. reduce GPr:processor 
(g1) with (r4-B), (r4-F) and (gh) to:  

HPr:okt_processor[p_price−>PP, ..]         (h5) 

As before, (h5) will trigger (ic6) and propagate the price constraint Pr.p_price ¥ 150.    
(c4) 

But now the unfolding of compute_discounted_price(S, S_price)  (g2) will be dif-
ferent, as both components are acquired from the same vendor (Pr.p_vendor = oktal, 
Mb.m_vendor=oktal), so that the discount is applicable to both components. In fact, 
since the undiscounted price S_price1 = Pr.p_price + Mb.m_price is above the dis-
count threshold for oktal S_price1 ¥ 220 (due to (c4) and (c2), ok-
tal.discount_threshold = 200), the system price will be: S_price = S_price1 ⋅ (1 − 
oktal.discount) = 0.9 ⋅ S_price. Thus, the lower bound on S_price will be 198, which 
is consistent with the (c1) constraint. Query planning has therefore retained only the 
following combination of sources: okt_processor and okt_motherboard, while dis-
carding the other three possible combinations at planning time, so that only 
okt_processor and okt_motherboard are actually queried. 



5 Source Capabilities 

Information sources are viewed as collections of source predicates that can be ac-
cessed via a specialized query interface. The query planner reduces a query formu-
lated in terms of model predicates to a query in terms of source predicates and con-
straints. However, since such a “global” query can involve source predicates from 
several information sources, it will have to be to split into sub-queries that can be 
treated by the separate information sources. Since each information source may have 
its own Web interface, we need to explicitly represent the capabilities of these inter-
faces. As opposed to traditional database query languages, such Web sources provide 
only limited query capabilities. For example, a specific Web interface may allow only 
certain types of selections and may also require certain parameters to be inputs (i.e. 
known at query time).  

More precisely, the capabilities of a given information source are described using 
the following items: 
•  the name of the source  
•  the source predicates that can be accessed from this source, with (optional) input 

argument annotations (these can be Web pages, Web interfaces to databases, or 
even Web services) 

•  the constraints that can be treated (internally) in selections (as filters). 
Parameters annotated with ‘+’ denote inputs, assuming that 

•  input parameters have to be instantiated at query time 
•  the other parameters are completely uninstantiated at query time  

The input-output specifications determine the dataflow in the query. Such specifica-
tions are especially important in the case of Web interfaces to databases, as well as for 
describing Web services. The plans produced by the query planner have to be refined 
in order to conform to these source capabilities. 

We define a precedence relation over the variable occurrences in source predicates.  
A variable occurrence X directly precedes another variable occurrence Y iff X oc-

curs in a predicate that provides an input to a + variable of another predicate contain-
ing Y (e.g. p(X,W), q(+W,Y)). The ‘precedes’ relation is the transitive closure of the 
‘directly precedes’ relation. 

We also say that a variable X precedes a predicate (literal) p iff X precedes some 
variable occurrence Y in p. We have similar notions of predicates preceding variables 
or other predicates. 

Let p( X ) be a literal in a query plan. Since the + variables of p have to be instanti-
ated before calling p, we have to make sure that all predicates preceding p have been 
called already. 

A query plan is consistent w.r.t. the source capabilities iff the precedence relation 
on its literals is acyclic. 

Since on the Web it will be virtually impossible to retrieve all records of source 
predicates with a very large number of such records, we additionally categorize 
sources as being either “large” or “normal”. 



Starting from a “logical” plan, we first try to assign to all “large” predicates binding 
patterns7 with as many input(+) arguments as possible, while keeping the query plan 
consistent (i.e. acyclic). Once having assigned binding patterns to all predicates of the 
plan, we execute it (without considering  later on alternative binding pattern assign-
ments, since the different binding patterns only control the format of the query and not 
its answer set). 

To further reduce the number of tuples retrieved from the sources (this being the 
most important efficiency bottleneck), we may take advantage of the sources that 
allow adding filters to the query (e.g. ask about motherboards with prices bellow 200). 
These filters can be constructed by propagating the user constraints from the query 
with other constraints from the source descriptions and the domain ontology. Of 
course, we can use as filters propagated constraints that refer exclusively to variables 
from the given predicate p( X ) and that match the source’s capabilities. 

However, there is an additional subtlety related to the necessity of making as few 
source calls as possible. 

For example, in the case of the following query: 

?- p(X, Y), s(Z), q(+Y, V), Y+Z+V < 200, Y > 0, Z > 0, V > 0. 

we have to execute p before q in order to instantiate Y for q, but s can be called at any 
time. If s is called earlier than q (which is a natural thing to do if parallel plan execu-
tion is possible), then Z will be instantiated at the time of q’s call. 

Naively, one would be tempted to use all the current variable instantiations (say 
Y=60, Z=100) to obtain a reduced constraint V<40 to be used as a filter in the call 
q(Y=60, V), V < 40. However, every instantiation of Z will produce a different call to 
q and thus we would have to call q a large number of times. Even worse, the sets of 
tuples returned, e.g. by q(Y=60, V), V < 40;   q(Y=60), V<100;  etc. will (partially) 
overlap.  

A better solution would be to propagate only the instantiations of the variables that 
(necessarily) precede q, i.e. Y=60, but not Z. In this case, the propagated constraint 
V<140 may be weaker, but it will be the same for all bindings of Z. Thus, a single 
query to q: q(+Y=60, V), V<140 will be enough, since we can reuse the tuples returned 
by it for all bindings of Z. 

 More precisely, let C  be the set of constraints propagated from the user constraints 
in the query. When executing the source predicate call p( X ), we attach to it as filter 
the set of constraints C ( X , '' xX = )|SC obtained by propagating from C  the instantiations 

'' xX =  of the variables 'X  that precede p and retaining only those constraints that sat-
isfy the source capabilities SC. 

                                                           
7 A given source predicate can have several input-output binding patterns. For example pub-

med(+PMID, Title, Author), pubmed(PMID, +Title, Author), pubmed(PMID, +Title, 
+Author), etc. 

 
 



6 Conclusions and Future Work 

An exhaustive comparison with other information integration systems is impossible, 
due to the very large number of such systems as well as to the lack of space. Briefly, 
while database oriented approaches to integration (such as multi-databases and feder-
ated databases) use fixed global schemas and are appropriate only if the information 
sources and users do not change frequently, we deal with dynamically evolving sche-
mas (especially if the LAV modeling approach is employed). On the other hand, more 
procedural intelligent information integration approaches, like TSIMMIS [11] and 
even some declarative systems like MedLan [1] or HERMES [21], use explicit query 
reformulation rules8, but without  the equivalent of our forward propagation rules 
(which allow an early discovery and pruning of inconsistent plans before query execu-
tion). Our approach is closer to the more declarative systems like SIMS [2], Informa-
tion Manifold [17] and Infomaster [6]. 

COIN [5] also uses a CLP framework (Eclipse) for abductive reasoning and CHRs 
for implementing integrity constraints. However, integrity constraints can be imposed 
in COIN only on source predicates. Thus, COIN domain knowledge reduces to Prolog 
reduction rules, which are used only backwards (during goal regression). The lack of 
forward propagation rules involving base predicates (and not just sources) makes the 
discovery of potential interactions between base predicates (and thus the full use of 
domain knowledge) impossible. Other related mediator-based Web integration sys-
tems are EMERAC [13] and Ariadne [15].  

This paper extends our research related to the SILK intelligent information envi-
ronment [3] to deal with the specificities of the Semantic Web. (The semi-structured 
nature of the data on the Web lead us to the use of an F-logic based internal reasoning 
level, while the limited source capabilities of Web resources and the high access costs 
required a different query planning strategy). A prototype implementation using plain 
Prolog (rather than F-logic) and CHR already exists. However, as shown in this paper, 
F-logic is a much more appropriate internal language for dealing with semi-structured 
data. We are currently working towards extending our system to use F-logic as inter-
nal reasoning language. This is non-trivial as there are no Prolog environments allow-
ing a combination F-logic and CHR.9 In this sense, our work is related to Xcerpt [4], 
an elegant declarative, rule-based query and transformation language for XML, for 
which a query planner is also currently under development. 
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