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Abstract� While the problem of learning logic programs has been exten�
sively studied in ILP� the problem of learning in description logics 
DLs�
has been tackled mostly by empirical means� Learning in DLs is how�
ever worthwhile� since both Horn logic and description logics are widely
used knowledge representation formalisms� their expressive powers being
incomparable 
neither includes the other as a fragment�� Unlike most ap�
proaches to learning in description logics� which provide bottom� up 
and
typically overly speci�c� least generalizations of the examples� this pa�
per addresses learning in DLs using downward 
and upward� re�nement
operators� Technically� we construct a complete and proper re�nement
operator for the ALER description logic 
to avoid over�tting� we disal�
low disjunctions from the target DL�� Although no minimal re�nement
operators exist for ALER� we show that we can achieve minimality of
all re�nement steps� except the ones that introduce the � concept� We
additionally prove that complete re�nement operators for ALER cannot
be locally �nite and suggest how this problem can be overcome by an
MDL search heuristic� We also discuss the in�uence of the Open World
Assumption 
typically made in DLs� on example coverage�

� Introduction

The �eld of machine learning has witnessed an evolution from ad�hoc specialized
systems to increasingly more general algorithms and languages� This is not sur�
prising since a learning algorithm aims at improving the behaviour of an existing
system� And since early systems were quite diverse� the early learning systems
were ad� hoc and thus hard to capture in a uni�ed framework� Nevertheless� im�
portant progresses were made in the last decade towards learning in very general
settings� such as �rst order logic� Inductive Logic Programming �ILP� deals with
learning �rst order logic programs� Very recently the expressiveness of the tar�
get language was extended to prenex conjunctive normal forms �	
� by allowing
existential quanti�ers in the language�

Description Logics �DL�� on the other hand� are a di�erent kind of knowl�
edge representation language used for representing structural knowledge and
concept hierarchies� They represent a function�free �rst order fragment allow�
ing a variable�free syntax� which is considered to be important for reasons of
readability �the readability of the speci�cations is an important issue in knowl�
edge representation� where the expressiveness and tractability of the language
are only considered together with the simplicity and understandability of the
representations��



Description logics are subsets of �rst order logic containing only unary predi�
cates �called concepts and representing sets of objects in the domain� and binary
predicates �referred to as roles and representing binary relations between domain
objects�� A number of concept and role constructors can be used to express
compound concept terms� which are variable�free representations of �rst�order
descriptions�

The research in description logics has concentrated on �practical� algorithms
and precise complexity results �
� for testing concept subsumption �inclusion�
and consistency� as well as checking the membership of objects �individuals� in
concepts for various combinations of concept and role constructors� These in�
ference services are particularly useful for managing hierarchical knowledge �de�
scription logics usually provide automatic classi�cation of concepts in a concept
hierarchy��

Since the expressivities of Horn logic and description logics are incomparable
���� and since one of the main limitations of Horn rules is their inability to model
and reason about value restrictions in domain with a rich hierarchical structure�
there have been several attempts at combining description logics and �function�
free� Horn rules �for example AL�log ��
�� CARIN ���� ����� Reasoning in such
combined languages is in general harder than in the separate languages �����

While deduction in description logics has been thoroughly investigated and
also while learning Horn rules has already reached a mature state �in the �eld
of Inductive Logic Programming�� learning DL descriptions from examples has
been approached mostly by heuristic means ��� �� �	�� For example� LCSlearn
��� is a bottom�up learning algorithm using least common subsumers �LCS� as
generalizations of concepts� It�s disjunctive version� LCSlearnDISJ� is similar
to the ILP system GOLEM since LCSs play the role of least general generalizers
�LGGs�� Bottom�up ILP systems like GOLEM proved quite successful in certain
applications �such as determining protein secondary structure�� but they usually
produce overly speci�c hypotheses� In Inductive Logic Programming� this draw�
back was eliminated by top�down systems like FOIL and Progol ����� which use
downward re�nement operators for exploring the space of hypotheses�

This paper aims at going beyond simple LCS�based learning in DLs by con�
structing complete upward and downward re�nement operators for the descrip�
tion logic ALER� This complete re�nement operator is used by a more sophis�
ticated learning algorithm to induce DL descriptions from examples�

Since description logics are a fragment of �rst�order logic� we could in princi�
ple translate DL expressions into prenex conjunctive form �PCNF� and use the
PCNF�re�nement operator de�ned by �	
� to re�ne the PCNF encoding of DL
expressions��

Example �� We could obtain the DL de�nition Influencial � �Friend�Influencial
by the following squence of PCNF re�nement steps�
Adding literals�
�� �xI�x�
� �x�y�zI�x� � F �y� z�
� �x�y�z�u�I�x� � F �y� z�� � I�u�

� We need a re�nement operator for PCNFs rather than universally quanti�ed clauses
because description logic expressions containing existential restrictions introduce ex�
istential quanti�ers into their �rst� order encodings�



� �x�y�z�u�v�I�x� � F �y� z�� ��I�u� � �I�v��
Uni�cations�

� �x�z�u�v�I�x� � F �x� z�� ��I�u� � �I�v��
� �x�z�v�I�x� � F �x� z�� ��I�x� � �I�v��
� �x�z�I�x� � F �x� z�� ��I�x� � �I�z��

Substitutions�
� �x�I�x� � F �x� c�� ��I�x� � �I�c��� where c is a new constant

e�substitution�
� �y�x�I�x� �F �x� y�� ��I�x� � �I�y��

eu�substitution�
� �x�y�I�x� �F �x� y�� ��I�x� � �I�y��

However� this straightforward approach has two disadvantages�

� The conversion from DL to PCNF can lead to an �exponential� blow�up of
the formulae� Converting everything to clausal form may spoil the structure
of the initial DL description and the conversion of the re�nement back to
DL may a�ect the readability of the result�

� In fact� since DL descriptions are coarser grained than FOL formulae� some
PCNF re�nements may not even have a DL counterpart� More precisely�
if �DL is a DL�re�nement operator and � a PCNF�re�nement operator�
then for every D 	 �DL�C� we have PCNF �D� 	 ���PCNF �C��� where
PCNF �C� is the PCNF encoding of the DL expression C� However� not
every D� 	 ��PCNF �C�� is the PCNF counterpart of a DL formula D�
D� � PCNF �D�� Worse still� there can be arbitrarily long PCNF re�ne�
ment chains �of some DL concept� that have no DL correspondence at all�
Apparently� the PCNF re�nement steps are too �ne grained�

To circumvent these problems� we need to develop a re�nement operator
working directly on DL formulae� But directly re�ning DL formulae has an even
deeper justi�cation than just convenience� In fact� the hypotheses language �in
our case a DL� plays the role of learning bias� which determines the granularity
of the generalization steps� A very �ne grained language �like FOL or PCNF�
may be unsuitable for generalizing coarser grained DL descriptions�

� The learning problem in Description Logics

In Description Logics� concepts represent classes of objects in the domain of
interest� while roles represent binary relations in the same domain�

Complex concepts �C�D� � � �� and roles �R�Q� S� � � �� in the ALER description
logic can be built from atomic concepts �A� and primitive roles �P � using the
following concept and the role constructors�

Concept constructor Syntax Interpretation
top concept 
 �
bottom concept � �
negation of atoms �A � nAI

concept conjunction C� uC� CI
� 
C

I
�

value restriction �R�C fx 	 � j �y��x� y� 	 RI � y 	 CIg
existential restriction �R�C fx 	 � j �y��x� y� 	 RI � y 	 CIg



Role constructor Syntax Interpretation
role conjunction R� uR� RI

� 
R
I

�

An interpretation I � ��� �I� consists of a non�empty set � �the interpreta�
tion domain� and an interpretation function �I which maps concepts to subsets
of � and roles to subsets of � �� according to the relationships in the table
above�

A knowledge base K � hT �Ai has two components� a Tbox �terminology�
T and Abox �assertional component� A� A terminology T contains a set of
de�nitions �terminological axioms� as below� representing intensional knowledge
about classes of objects�

De�nition of A Syntax Interpretation
su�cient A� C AI � CI

necessary A� C AI � CI

necessary and su�cient A � C AI � CI

The Abox A contains extensional information in the form of membership
assertions stating that speci�c individuals are instances of certain concepts or
are involved in relations with other individuals as tuples of certain roles�

Assertion Syntax Interpretation
concept instance C�a� aI 	 CI

role tuple R�a� b� �a� b�I 	 RI

An interpretation satis�es a �terminological or assertional� axiom i� the con�
ditions in the tables above hold� �The interpretation function maps individuals�
such as a and b� to domain elements such that the unique names assumption is
satis�ed� aI �� bI if a �� b��

An interpretation that satis�es all the axioms of the knowledge base K is a
model of K�

Description logics represent a �rst�order logic fragment written in a variable�
free syntax� The �rst�order encoding of ALER descriptions is given below�

C C�x�

 true
� false
�A �A�x�

C� uC� C��x� �C��x�
�R�C �y�R�x� y�� C�y�
�R�C �y�R�x� y� �C�y�

R R�x� y�
R� uR� R��x� y� �R��x� y�

De�nition FOL encoding
A� C �x� A�x�� C�x�
A� C �x� A�x�� C�x�
A � C �x� A�x�� C�x�

Assertion FOL encoding
C�a� C�a�
R�a� b� R�a� b�

Description logics trade expressive power for more e�cient �dedicated� infer�
ence services� as well as for an increased readability� Unlike FOL reasoners� DLs
provide complete decision algorithms �which are guaranteed to terminate and
whose complexity is tightly controlled� for the following �deductive� reasoning
services�



� KB�satis�ability � K is satis�able i� it admits a model�
� concept satis�ability � C is satis�able w�r�t� K i� K admits a model I such
that CI �� ��

� concept equivalence� C and D are equivalent w�r�t� K� K j� C � D� i�
CI � DI for every model I of K�

� concept subsumption� C is subsumed� by D w�r�t� K� K j� C � D� i�
CI � DI for every model I of K� �We sometimes also write C v D instead
of C � D to emphasize that subsumption is a generality order��
C is strictly subsumed by D� C � D i� C v D and C �� D�

� instance checking � a is an instance of C� K j� C�a�� i� the assertion C�a� is
satis�ed in every model of K�

All the above deductive inference services can be reduced to ALCR KB�
satis�ability ����

Typically� terminological axioms have been used in DLs mainly for stating
constraints �in the form of necessary de�nitions� on concepts� In our learning
framework however� we also need su�cient de�nitions for classifying individuals
as being instances of a given concept� Although theoretical work has addressed
the issue of very general terminological axioms �such as general inclusions �����
most existing DL implementations do not allow su�cient de�nitions in the TBox�
However� we can �simulate� a set of su�cient de�nitions fA� C�� � � � � A� Cng
in a DL with disjunctions by using the necessary and su�cient de�nition A �
C� t � � �tCn tA�� where A� is a new concept name�

In this paper we aim at endowing DLs with inductive inference services as
well� The learning problem in DLs can be stated as follows�

De�nition�� Let K � hT �Ai be a DL knowledge base� A subset A� � A of the
assertions A can be viewed as �ground� examples of the target concept A�

A� � fA�a��� A�a��� � � � ��A�b����A�b��� � � �g�

The DL learning problem consists in inducing a set of concept de�nitions for A�
T �� � fA� C�� A� C�� � � �g that covers the examples A�� i�e�

hT � T ���A nA�i j� A��

In other words� we replace the speci�c examples A� from the Abox with more
general Tbox de�nitions T ��� Note that� after learning� the knowledge base will
be hT � T ���Ai� which is equivalent with hT � T ���A n A�i� since the latter is
supposed to cover the examples A��

Alternatively� we could consider a more general setting in which Tbox de�ni�
tions of A can also serve as examples� In this case� the examples are a knowledge
base hT ��A�i such that

T � � fA� D�� A� D�� � � �g � T
A� � fA�a��� A�a��� � � � ��A�b����A�b��� � � �g � A

and the learning problem consists in inducing a set of concept de�nitions for A
T �� � fA� C�� A� C�� � � �g that cover the examples hT ��A�i � i�e�

h�T n T �� � T ���A nA�i j� hT ��A�i�

� Concept subsumption in description logics should not be confused with clause sub�
sumption in ILP and Automated Reasoning�



�The knowledge base after learning hT � T ���Ai is equivalent with h�T n T �� �
T ���AnA�i�� Note that� in this setting� hT nT ��AnA�i plays the role of background
knowledge�

The learning problem thus formulated is very similar to the standard setting
of Inductive Logic Programming� The main di�erences consist in the di�erent
expressivities of the target hypotheses spaces and the Open World Assumption
�OWA� adopted by DLs �as opposed to the Closed World Assumption usually
made in �Inductive� Logic Programming��

� ALER re�nement operators

While Inductive Logic Programming �ILP� systems learn logic programs from
examples� a DL�learning system should learn DL descriptions from Abox in�
stances� Both types of learning systems traverse large spaces of hypotheses in
an attempt to come up with an optimal consistent hypothesis as fast as possi�
ble� Various heuristics can be used to guide this search� for instance based on
information gain� MDL ����� etc� A simple search algorithm �even a complete
and non�redundant one� would not do� unless it allows for a �exible traversal of
the search space� based on an external heuristic� Re�nement operators allow us
to decouple the heuristic from the search algorithm� Downward �upward� re�ne�
ment operators construct specializations �generalizations� of hypotheses and are
usable in a top�down �respectively bottom�up� search of the space of hypotheses�

De�nition�� A downward �upward� re�nement operator is a mapping � from
hypotheses to sets of hypotheses �called re�nements� which produces only spe�
cializations �generalizations�� i�e� H� 	 ��H� implies H j� H� �respectively
H � j� H�� �We shall sometimes also write H � H� instead of H� 	 ��H���

If the hypotheses are su�cient de�nitions� then A � C� is more general
than �entails� A� C� i� C� subsumes �is more general than� C� �C� w C���

In ILP the least general generalization �lgg� of two clauses is the least general
clause that subsumes both� Note that although such an lgg is more general than
conjunction� taking the lgg is justi�ed by the fact that the conjunction of clauses
is not a clause and would only over�t the input clauses �i�e� wouldn�t perform
any generalization leap��

Similarly with ILP� we de�ne the lgg of two su�cient de�nitions as

lgg�A � C�� A� C�� � A� lcs�C�� C���

where lcs�C�� C�� is the least common subsumer ��� of the DL concepts C� and
C�� In order to avoid over�tting and allow generalization leaps� the DL used as
a target language should not provide concept disjunctions�� since the lcs would
otherwise reduce to concept disjunction�

For hypotheses representing necessary de�nitions� A � C� is more general
than �entails�A� C� i�C� is subsumed by �is more speci�c than� C� �C� v C���
The lgg of two necessary de�nitions reduces to concept conjunction

lgg�A � C�� A� C�� � A� C� uC��

� this justi�es our choice of the target language ALER instead of the more expressive
ALCR� which allows concept disjunctions�



while their most general specialization �mgs� is

mgs�A � C�� A� C�� � A� lcs�C�� C���

While su�cient de�nitions �A� Csuff � represent lower bounds on the target
concept A� necessary de�nitions �A � Cnec� represent upper bounds on A� i�e�
Csuff v A v Cnec�

Note that a downward re�nement operator on concept descriptions C �going
from 
 to �� induces a downward re�nement operator on su�cient de�nitions
A� C and an upward re�nement operator on necessary de�nitions A� C�

But unlike necessary de�nitions A � C�� � � � � A � Cn� whose conjunction
can be expressed as a single necessary de�nition A � C� u � � � u Cn� su�cient
de�nitions like A � C�� � � � � A � Cn cannot be expressed as a single su�cient
de�nition unless the language allows concept disjunction� A� C� t � � �tCn��

In the following� we construct a complete downward re�nement operator for
ALER concepts�

De�nition�� A downward re�nement operator � on a set of concepts ordered
by the subsumption relationship w is called

� �locally� �nite i� ��C� is �nite for every hypothesis C�
� complete i� for all C and D� if C is strictly more general than D �C � D��
then �E 	 ���C� such that E � D�

� weakly complete i� ���
� � the entire set of hypotheses�
� redundant i� there exists a re�nement chain� fromC� toD not going through
C� and a re�nement chain from C� to D not going through C��

� minimal i� for all C� ��C� contains only downward covers� and all its ele�
ments are incomparable�

� proper i� for all C and D� D 	 ��C� entails D � C �or� equivalently�
D �� C��

�For de�ning the corresponding properties of upward re�nement operators� we
simply need to replace the generality order w by its dual v��

We �rst construct a complete but non�minimal �and thus highly redundant	�
re�nement operator for which the completeness proof is rather simple� Subse�
quently� we will modify this operator �while preserving its completeness� to re�
duce its non�minimality�

� Of course� such necessary de�nitions could be approximated by A� lcs
C�� � � � � Cn��
but this is more general than the conjunction of the original de�nitions�

� A re�nement chain from C to D is a sequence C�� C�� � � � � Cn of hypotheses such
that C � C�� C� � �
C��� C� � �
C��� � � � � Cn � �
Cn����D � Cn� Such a re�nement
chain does not �go through� E i� E �� Ci for i � �� � � � � n�

	 D is a downward cover of C i� C is more general than D 
C � D� and no E satis�es
C � E � D�


 There are two possible sources of redundancy in a re�nement operator�
� non�minimal re�nement steps� and
� the possibility of reaching a hypothesis from two di�erent incomparable hypothe�
ses�
Here we refer to the �rst type of redundancy� which can be eliminated by disallowing
non�minimal steps� 
The second type of redundancy can be eliminated using the
methods from ��� 
���



The re�nement operator �
 is given by the following re�nement rules �recall
that C � D means D 	 �
�C�� which entails the fact that C subsumes D�
C w D��

Re�nement rules of �


�Lit� C � C u L with L a DL�literal �to be de�ned below�
��C� C u �R�C�� C u �R�C� if C� � C�

��R� C u �R��D � C u �R��D if R� � R�

���� C u �R��C� u �R��C�� C u ��R� uR����C� uC��
��C� C u �R�C�� C u �R�C� if C� � C�

��R� C u �R��D � C u �R��D if R� � R�

�PR� R� R u P with P a primitive role�

The re�nement rules above apply to concepts in ALER�normal form� which
can be obtained for a concept by applying the following identities as rewrite
rules�
 left�to�right until they are no longer applicable�

���� �R�C u �R�D � �R��C uD�
���R� �R�C u �Q�D � �R��C uD� u �Q�D if R � Q
���� �R�C u �Q�D � �R��C uD� u �Q�D if R v Q

�R�
 � 
 �R�� � �
C u �C � � C u
 � C C u� � �

For example� the normal form of ��P� u P���A� u �P���A� u �P��A� u �P��A�

is ��P� u P����u �P����A� uA�� u �P����A� uA� uA���

De�nition	� In the re�nement rule �Lit�� a DL�literal is either
� an atom �A�� the negation of an atom ��A��
� an existential restriction �P�
 for a primitive role P � or

� a value restriction �
nQ
i��

Pi�L
� with L� a DL�literal � where fP�� ��� Png is the

set of all primitive roles occurring in the knowledge base�

An example of a �
�chain
 

�Lit

� A�

�Lit

� A�u��P�uP���A�

�Lit

� A�u��P�u

P���A� u �P��

��C

� A� u��P� uP���A� u �P��A�

��R

� A� u�P��A� u�P��A�

�Lit

�

A� u �P��A� u �P��A� u �P��

��C

� A� u �P��A� u �P��A� u �P��A�

���

� A� u

�P��A� u �P���A� uA���
The above de�nition of DL�literal can be explained as follows� The addition

of new 	DL�literals
 in the �Lit� rule should involve not just atoms and negations
of atoms �i�e� ordinary literals�� but also existential and value restrictions� For
minimality� these have to be most general w�r�t� the concept to be re�ned C �as
well as non�redundant � if possible��

The most general existential restrictions take the form �P�
 for a primitive
role P � But if P already occurs in some other existential restriction on the
�top level� of C �i�e� C � C� u �R��C� such that P w R�� or� in other words�
R� � R�

� u P �� then �P�
 is redundant w�r�t� C� This is due to the following
result�
�� Under associativity� commutativity and idempotence of u�



Proposition�� �R��C� v �R��C� if R� v R� and C� v C��

Consequently� the restriction to be added �R��C� is redundant w�r�t� some other
existential restriction �R��C� �i�e� �R��C� u �R��C� � �R��C�� if C� v C� and
R� v R��

But disallowing the addition of �P�
 toC in cases in which some �R��C� with
R� v P already occurs in C �which would ensure the properness of �
� would
unfortunately also lead to the incompleteness of �
� For example� it would be
impossible to reach �P�A� u �P�A� as a re�nement of �P�A�� because the �rst
step in the following chain of re�nements���

�P�A�
�Lit

� �P�A� u �P�


��C

� �P�A� u �P�A�

would fail� due to the redundancy of �P�
�
�P�
 is redundant because it is too general� Maybe we could try to directly

add something more speci�c� but non�redundant �like �P�A� in the example
above�� However� determining the most general non�redundant existential re�
strictions is complicated� We will therefore allow the re�nement operator � to be
improper �i�e� produce re�nements D 	 ��C� that are equivalent to C���� but �
in order to obtain proper re�nements � we will successively apply � until a strict
re�nement �i�e� some D � C� is produced� The resulting re�nement operator �cl

�the �closure� of �� will be proper� by construction� More precisely�

De�nition�� D 	 �cl�C� i� there exists a re�nement chain of ��

C
�
� C�

�
� C�

�
� � � �

�
� Cn � D �

such that Ci � C for i � �� � � � � n� � and Cn � C�

In the above�mentioned example� we have the following re�nement chain of �
�

C � �P�A�
�Lit

� C� � �P�A� u �P�


��C

� C� � �P�A� u �P�A�

for which C � C� and C � C�� Therefore� C� 	 �cl
 �C� is a one�step re�nement
of the �closure� �cl
 �

For determining the most general value restrictions� we consider the dual of
Proposition ��

�� which is the only chain that can lead from �P�A� to �P�A� u �P�A�
�� The speci�c syntactic form of D is important in this case� In order to preserve com�

pleteness� we disallow the use of the following redundancy elimination rules 
which
will be used only for simplifying the result returned to the user��

��red� �R��C� u �R��C� � �R��C� if R� w R� and C� v C�

��red� �R��C� u �R��C� � �R��C� if R� v R� and C� v C�

For example� their use would disallow obtaining �P�A� u �P�A� from �P�A��

�P�A�
�Lit�
� �P�A� u �P�	

��C�
� �P�A� u �P�A�

because �P�A�u�P�	would be simpli�ed by the ��red� redundancy elimination rule
to �P�A�� thereby making the second step 
��C�� inapplicable�



Proposition
� �R��C� v �R��C� if R� w R� and C� v C��

�In fact� we can prove an even stronger result� W�r�t� an ALER knowledge base
K with no necessary de�nitions� K j� �R��C� v �R��C� i� K j� R� w R� and
K j� C� v C�� Thus� the restriction to be added �R��C� is non�redundant w�r�t�
�R��C� �i�e� �R��C� u �R��C� �� �R��C�� i� R� �w R� or C� �v C���

Formally� the most general value restrictions take the form �R�
� But unfor�
tunately� such value restrictions are redundant due to the identity �R�
 � 
�
Less redundant value restrictions are �R�L�� where L� is a DL�literal� Note that
R in �R�L� cannot be just a primitive role P � since for example ��P uR���L� is
more general than �subsumes� �P�L�� With respect to R� the most general value
restriction thus involves a conjunction of all primitive roles in the knowledge

base �
nQ
i��

Pi�L
�� but unfortunately this is� in general� also redundant� As shown

above� redundancy can be eliminated by considering the �closure� �cl
 of �
�

��� Reducing non�minimality

It is relatively easy to show that the re�nement operator �
 �as well as its closure
�cl
 � is complete� However� it is non�minimal �and thereby highly redundant�� due
to the following ALER relationships�

�R�C� u �R�C� w �R��C� uC��� ���

�R�C� u �R�C� � �R��C� uC��� �	�

� ��� suggests that� for reasons of minimality� we should not allow in ��C� C�

inside �R�C� to be re�ned by literal additions ��Lit�� to C� uL�

C u �R�C�
��C

� C u �R��C� u L��

because this single�step re�nement could also be obtained with the following
sequence of smaller steps �the ��
� step is de�ned below��

Cu�R�C�
�Lit

� Cu�R�C�u�R�


���

� Cu�R�C�u�R�L

���

� Cu�R��C� uL��

In other words� instead of directly re�ning �R�C� to �R��C� uL�� we �rst
add �R�L� and then merge �R�C� and �R�L to �R��C� u L� using ���� �the
re�nement step being justi�ed by �����

� Similarly� �	� suggests that� for reasons of minimality� we should disallow in
��C� C� inside �R�C� to be re�ned by literal additions ��Lit�� to C� u L�

C u �R�C�
��C

� C u �R��C� u L��

because this single�step re�nement could also be obtained with the following
sequence of smaller steps�

Cu�R�C�
�Lit�
� Cu�R�C�u�
R u � � ���L

��R�
� � � �

��R�
� Cu�R�C�u�R�L

����
� Cu�R�
C� u L��

�In the last step� we applied the simpli�cation rule ������



� Thirdly� the relationship

�R��C u �R��C w ��R� uR���C ���

suggests that� for reasons of minimality� we should also drop the ��R� alto�
gether� The rule ��R� of �
 is redundant since the single step

C u �R��D
��R

� C u ��R� u P ��D

can also be obtained in several steps� as follows�

Cu�R��D
�Lit�
� Cu�R��Du�P�	

����
� � � �� Cu�R��Du�P�D

����
� Cu�
R� u P ��D�

Thus� instead of directly re�ning �R��D to ��R� u P ��D� we �rst add �P�D
and then merge �R��D and �P�D to ��R� uP ��D using ���� �the re�nement
step being justi�ed by �����

� Finally� since the �Lit� step of �
 can add literals L that are complementary
to an already existing literal from C� we can obtain inconsistent concepts
as re�nements of any C� Of course� although C � � is a valid re�nement
step �because C w ��� it is not only non�minimal� but also useless if it is
applied on the �top level��� of the concept to be re�ned� However� re�ning
some subconcept �of the concept to be re�ned� to �makes sense� for example
�R�C � �R�� ��R�� being consistent��� although it is still non�minimal� Un�
fortunately� as we show below� all re�nements C� � C� that introduce a new
� in �some subconcept of� C� are always non�minimal� so we have to make
a trade�o� between the minimality and the completeness of the re�nement
operator� If we want to preserve completeness� we need to allow re�nement
steps like C � �� if not on the �top level� of the concept to be re�ned �i�e� in
the rule �Lit�� or in ��C� �where allowingCu�R��C � Cu�R��� � � would
lead to an inconsistency�� then at least in ��C�� which has to be modi�ed as
follows�
��C� C u �R�C�� C u �R�C� where C� � C� or C� � ��
However� besides this explicit introduction of � in � restrictions� we shall
require re�nements to be consistent � More formally� D 	 ��C� i� D is ob�
tained as a re�nement of C using the re�nement rules below �C � D� and
D is consistent �

The resulting re�nement operator � presented below treats literal additions
�Lit� in a special manner �since �Lit� is not allowed to be recursively used in ��C�
or ��C� rules�� We therefore let �� denote all the rules of � except �Lit��

Re�nement rules of ��

��
� C u �R�
� C u �R�L with L a DL�literal

��C� C u �R�C� � C u �R�C� if C�
��

� C�

���� C u �R��C� u �R��C�� C u ��R� uR����C� uC��

��C� C u �R�C� � C u �R�C� if C�
��

� C� or C� � �
��R� C u �R��D� C u �R��D if R�� R�

�PR� R� R u P with P a primitive role�

�� i�e� to C� as opposed to its subconcepts�



In the following� we shall write C
Rule
� D whenever D is obtained as a

re�nement of C using the re�nement rule Rule �which can be ��
�� ��C�� �����

��C�� ��R�� or � in the case of � � also �Lit��� Moreover� we sometimes write C
��

�

D instead of D 	 ���C� �denoting the fact that D is obtained as a re�nement of
C without using the �Lit� rule��

The re�nement rules of the complete re�nement operator � are the re�nement
rules of �� together with the �Lit� rule�

Re�nement rules of �

���� re�nement rules of ��

�Lit� C � C u L with L a DL�literal such that C u L is consistent�

We recall that we have de�ned D 	 ��C� i� C � D and D is consistent�

��� Properties of �

�� Completeness� Since �
 is complete and the modi�cation of �
 to � pre�
serves completeness� � will be complete too�
Note that we are adding DL�literals either on the �top level� of the concept
to be re�ned �using �Lit��� or inside �R�
 restrictions �in ��
��� Such literals
can be �moved inside� � � � � � � � � chains by using the ���� re�nement rule
and the ���� rewrite rule�

	� Properness� Like in the case of �
� � is not proper because the DL�literals
of the form �P�
 inserted can be redundant� For achieving properness� we
should consider the closure �cl� rather than simplifying these redundancies
�which would a�ect completeness��

�� Minimality� By construction� � has less non�minimal steps than �
� How�
ever� there exists a fundamental trade�o� between minimality and complete�
ness of ALER re�nement operators in general �not just for ours��

Proposition�� There exist no minimal and complete ALER re�nement
operators���

Example �� The following in�nite chain of minimal re�nements between �P�A
and �P��

C � �P�A �

C� � �P��A u �P�A� �

C� � �P��A u �P��A u �P�A�� �

C� � �P��A u �P��A u �P��A u �P�A��� � � � � �

C� � �P��

�� There cannot exist a minimal re�nement step C � �P��� since there exists
a su�ciently large n 
for example� larger than the size of C� such that C �

C u �P� � � ��P�� �z �
n

A � �P���



shows that a minimal re�nement operator will not be able to reach �P��
from �P�A in a �nite number of steps� thereby being incomplete�
On the other hand� if we insist on completeness� we should allow �P�� as a
re�nement of someCi� thereby making the re�nement operator non�minimal �

Our re�nement operator allows �P�� as a re�nement of any Ci in the exam�
ple above� It is therefore non�minimal� However� we conjecture that although
there exist no minimal and complete re�nement operators for ALER� there
exist re�nement operators all of whose steps C � D are minimal� except for
the steps involving the introduction of � in some subconcept of D �like in the
C� � � case of the ��C� rule of our re�nement operator ��� This suggests
that our � is one of the best re�nement operators one can hope for�

�� Local �niteness� The following example shows that there can be no locally
�nite and complete ALER re�nement operators�

Example 
� A� admits the following in�nite set of minimal direct re�ne�
ments�

fA� u �P�A� A� u �P��P�A� A� u �P��P��P�A� � � �g�

Therefore� since � is complete� it will not be locally �nite either� Appar�
ently� this seems to be a signi�cant problem� However� as the example above
suggests� the in�nite set of minimal direct re�nements of some concept C
involves increasingly longer concepts D� which will be immediately discarded
by a re�nement heuristic taking into account the size of hypotheses�

f�H� � pos�H� � neg�H� � size�H�

�where pos�H� and neg�H� are the number of positive�negative examples
covered by the hypothesis H��
Note that the lack of local �niteness and respectively minimality of a com�
plete ALER re�nement operator seem to be related� �They seem to involve
value restrictions and � in an essential way���� This situation also seems
to be related to the non�existence of the Most Speci�c Concept �MSC� of
individuals in some concept languages� such as ALN ����

� Testing example coverage

Although both Horn�clause logic programming �LP� and description logics �DL�
are fragments of �rst order logic and are therefore similar in certain respects�
there are also some signi�cant di�erences�

� DLs make the Open World Assumption �OWA�� while LP makes the Closed
World Assumption �CWA��

�� The situation is unlike in ILP� where such problems do not occur 
obviously� because
value restrictions cannot be expressed in Logic Programming��
In ALER� on the other hand� we do not have in�nite ascending chains ����

because ALER does not allow the construction of cyclic descriptions 
such as
R
X��X���R
X��X���R
X��X��� for example��



� DL de�nitions like A� �R�C and A� �R�C involve existentially quanti�ed
variables and thus cannot be expressed in pure LP� Using the meta�predicate
forall � we could approximateA� �R�C as A�X�� forall�R�X�Y �� C�Y ���
But while the former de�nition is interpreted w�r�t� the OWA� the latter is
interpreted w�r�t� the CWA� which makes it closer to A� �KR�C� where K
is an epistemic operator as in ����� Also� while DLs provide inference services
�like subsumption checking� to reason about such descriptions� LP systems
with the meta�predicate forall can only answer queries� but not reason about
such descriptions�

Although the OWA is sometimes preferable to the CWA��� the OWA is a
problem when testing that a de�nition� for example A � �R�C� covers a given
example� for instance A�ai�� Examples are unavoidably incomplete� Even if all
the known R��llers of ai from the Abox verify C�

A � fR�ai� bi��� C�bi��� � � � � R�ai� bin�� C�bin�g

this doesn�t mean that ai veri�es �R�C��� so the antecedent �R�C of A� �R�C
will never be satis�ed by an example ai �unless explicitly stated in the KB��
However� ai will verify �KR�C because all the known R��llers of ai verify C� so
the de�nition A� �KR�C covers the example A�ai�� as expected�

Thus� when checking example coverage� we need to �close� the roles �for
example� by replacing R with KR� or� equivalently� assuming that the known
�llers are all the �llers��

	�� Example coverage for su�cient de�nitions

De�nition�� In the case of a DL knowledge base hT �Ai� for which A� �
fA�a��� � � � � A�ap���A�ap���� � � � ��A�ap�n�g � A are considered �positive and
negative� examples� we say that the su�cient de�nition A� C covers the �pos�
itive or negative� example ai i�

clhT � fA� Cg�A nA�i j� A�ai��

which is equivalent with the inconsistency of

clhT � fA� Cg� �AnA�� � f�A�ai�gi�

where clhT �Ai denotes the role�closure of the knowledge base hT �Ai �which
amounts to replacing roles R with KR��

Example �� Consider the following knowledge base hT �Ai with an empty Tbox
�T � �� and the Abox��

A � fIP �j�� R�j�� F �j� j��� I�j��� F �j� j��� I�j���

�IP �f�� R�f��

�IP �m�� R�m�� F �m�m��� I�m��� F �m�m���

�IP �h�� F �h� h��� I�h��� F �h� h��� I�h��g�

�� For example� when expressing constraints on role �llers using value restrictions�
�� because of the OWA� there could exist� in principle� a yet unknown R��ller of ai not

verifying C�
�	 Where the individuals j� m� f� h stand for John� Mary� Fred� Helen� while the atomic

concepts IP� R� I stand for In�uencial Person� Rich� In�uencial and the primitive
role F for Friend �



where A� � fIP �j���IP �f���IP �m���IP �h�g are considered as positive and
negative examples�

The following su�cient de�nition covers all positive examples while avoiding
all �not covering any� negative examples�

IP � R u �F�I u �F�I ���

��� covers the positive example IP �j� because hfIP � Ru�KF�Iu�KF�Ig� �An
A���f�IP �j�gi is inconsistent� since �R�j�� ���KF�I��j�� ���KF�I��j� are all
inconsistent�

� �R�j� because R�j� 	 A n A�

� ���KF�I��j�� i�e� ��KF��I��j� because all the known F ��llers of j �namely
j� and j�� are I

� ���KF�I��j�� i�e� ��KF��I��j� because there exists an F ��ller of j �for ex�
ample j�� that is I�

Note that the more general de�nition IP � Ru�F�I covers the negative ex�
ample �IP �f� because hfIP � Ru�KF�Ig� �AnA���f�IP �f�gi is inconsistent�
since �R�f�� ���KF�I��f� are both inconsistent�

� �R�f� because R�f� 	 A n A�

� ���KF�I��f�� i�e� ��KF��I��f� because there exists no known F ��ller of f �

And since the more speci�c ��� does not cover the negative example �IP �f�
�due to the consistency of ���KF�I��f��� we conclude that �F�I discriminates
between the positive example IP �j� and the negative example �IP �f� and is
therefore necessary in ����

IP � �F�I u �F�I �which is also more general than ���� covers the negative
example �IP �h� because hfIP � �KF�I u �KF�Ig� �A n A�� � f�IP �h�gi is
inconsistent� since ���KF�I��h�� ���KF�I��h� are inconsistent�

� ���KF�I��h�� i�e� ��KF��I��h� because all the known F ��llers of h �namely
h� and h�� are I

� ���KF�I��h�� i�e� ��KF��I��h� because there exists an F ��ller of h �for
example h�� that is I�

And since the more speci�c ��� does not cover the negative example �IP �h�
�due to the consistency of �R�h��� we conclude that R discriminates between
the positive example IP �j� and the negative example �IP �h� and is therefore
necessary in ����

IP � R u �F�I �which is also more general than ���� covers the negative
example �IP �m� because hfIP � Ru �KF�Ig� �AnA�� � f�IP �m�gi is incon�
sistent� since �R�m�� ���KF�I��m� are inconsistent�

� �R�m� because R�m� 	 A n A�

� ���KF�I��m�� i�e� ��KF��I��m� because there exists an F ��ller ofm �namely
m�� that is I�

And since the more speci�c ��� does not cover the negative example �IP �m�
�due to the consistency of ���KF�I��m��� we conclude that �F�I discriminates
between the positive example IP �j� and the negative example �IP �m� and is
therefore necessary in ����

The right�hand side of ��� is obtained by the re�nement operator � from 

by the following sequence of steps�



C
 � 

�Lit

� C� � R

�Lit

� C� � R u �F�I

�Lit

� C� � R u �F�I u �F�


���

�

R u �F�I u �F�I�
All Ci above cover the positive example IP �j�� However� C
 covers all �

negative examples� C� only �IP �f�� �IP �m�� C� only �IP �f�� while C� avoids
all negative examples and would be returned as a solution� IP � C��

	�� Verifying necessary de�nitions

While su�cient de�nitions can be used to classify individuals as instances of the
target concept� necessary de�nitions impose constraints on the instances of the
target concept� Roughly speaking� a necessary de�nition A� C is veri�ed i� it
is entailed by the knowledge base� hT �Ai j� �A� C�� which can be reduced to
the inconsistency of Au�C w�r�t� hT �Ai� i�e� to the non�existence of an instance
x of Au�C� Such an x could be either ai�	� another known individual� or a new
one� Since the examples ai of A are unavoidably incomplete� A � C will not
be provable for all imaginable instances x� Equivalently� �A u �C��x� will not
�and need not� be inconsistent for any x� In fact� we need to prove A � C �or�
equivalently� to check the inconsistency of Au�C� only for the known examples
ai of A� This amounts to proving �KA� � C� i�e� to considering the closure of
the target concept A� Since A�ai� holds anyway� we just need to prove C�ai� for
all positive examples ai of A� More precisely�

De�nition��� The necessary de�nition A� C is veri�ed in hT �Ai i� �A�ai� 	
A�� clhT �A� f�C�ai�gi is inconsistent�

Note that the above de�nition can be considered to obey the so�called �prov�
ability view� of constraints� �Adopting the weaker �consistency view� may be too
weak in our learning framework� assuming that a constraint is veri�ed just be�
cause it is consistent with the examples may lead to the adoption of too strong
� and thus unjusti�ed � constraints��

� Learning in DLs using re�nement operators

A top�down DL learning algorithm would simply re�ne a very general de�nition
of the target concept� like A � 
� using a downward re�nement operator�


until it covers no negative examples� �A heuristic maximizing the number of
positive examples covered� while minimizing the size of the de�nitions as well
as the number of negative examples covered can be used to guide the search��
If this �rst covering step still leaves some positive examples uncovered� then
subsequent covering steps will be employed to learn additional de�nitions until
either all positive examples are covered� or the learning process fails due to the
impossibility to cover certain positive examples without also covering �some�
negative examples�

�
 Assuming that the known positive examples of A are A� � fA
a��� � � � �A
an�g�
�� The inherent redundancy of the complete re�nement operator � needs to be elimi�

nated by converting it into a weakly complete operator� This can be done using the
methods from ��� 
��



Note that our approach avoids the di�culties faced by bottom�up approaches�
which need to compute the minimalTbox generalizations MSC�ai� �called most
speci�c concepts ��� ��� of the Abox examples A�ai�� Most existing bottom�up
approaches �such as ���� then use least common subsumers �LCS� ��� �� 	� to
generalize the MSC descriptions� Unfortunately� such approaches tend to produce
overly speci�c concept de�nitions� On the other hand� by reverting the arrows
in our downward re�nement operator� we obtain an upward re�nement operator
for the description logic ALER which can be used to search the space of DL
descriptions in a more �exible way than by using LCSs and also without being
limited to considering only least generalizations�

� Conclusions

This paper can be viewed as an attempt to apply ILP learning methods to
description logics � a widely used knowledge representation formalism that is
di�erent from the language of Horn clauses� traditionally employed in ILP� Ex�
tending ILP learning methods to description logics is important for at least two
reasons� First� description logics represent a new sort of learning bias� which
necessitates a more sophisticated re�nement operator �than typical ILP re�ne�
ment operators�� Second� description logics provide constructs� such as value
restrictions� which cannot be expressed in Horn logic� thereby enhancing the
expressivity of the language and making it more suitable for applications that
involve rich hierarchical knowledge�

Since Horn logic �HL� and description logics �DLs� are complementary� devel�
oping re�nement operators for DLs represents a signi�cant step towards learning
in an integrated framework comprising both HL and DL� Due to the di�erences
in expressivities between DLs and HL� constructing DL and respectively HL re�
�nement operators encounter di�erent problems� Neither can be minimal �while
preserving completeness�� but for di�erent reasons� in HL we can have in�nite as�
cending chains� while in our ALER description logic we cannot� non�minimality
being due to the interplay of value restrictions and �� We also discuss the im�
pact of the Open World Assumption �usually employed in DLs� on learning and
especially on example coverage� but this issue needs further investigation�

Since learning in even a very simple DL allowing for de�nitions of the form
C � �R��A� u � � �uAn� is NP�hard �Theorem 	 of ������ learning in our frame�
work will be NP�hard as well� However� we prefer to preserve a certain expressive�
ness of the language and plan to study more deeply the average case tractability
of our approach �for which worst�case intractability is less relevant��

We are currently exploring methods of taking into account Tbox de�nitions
T as background knowledge during re�nement� as we plan to further reduce the
non�minimality of our re�nement operator w�r�t� T �� � �a re�nement step that
is minimal w�r�t� T � � could be non�minimal when taking into account the
de�nitions of some non�empty T �� Note that completeness is not an issue in
this case� since a re�nement operator that is complete w�r�t� T � � will remain
complete w�r�t� a non�empty terminology�
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