A Refinement Operator for Description Logics

Liviu Badea' and Shan-Hwei Nienhuys-Cheng?

1" Al Lab, National Institute for Research and Development in Informatics
8-10 Averescu Blvd., Bucharest, Romania.
e-mail: badea@ici.ro
2 Erasmus University Rotterdam, H9-14, Post Box 1738
3000 DR, Rotterdam, The Netherlands.

e-mail: cheng@few.eur.nl

Abstract. While the problem of learning logic programs has been exten-
sively studied in ILP, the problem of learning in description logics (DLs)
has been tackled mostly by empirical means. Learning in DLs is how-
ever worthwhile, since both Horn logic and description logics are widely
used knowledge representation formalisms, their expressive powers being
incomparable (neither includes the other as a fragment). Unlike most ap-
proaches to learning in description logics, which provide bottom- up (and
typically overly specific) least generalizations of the examples, this pa-
per addresses learning in DLs using downward (and upward) refinement
operators. Technically, we construct a complete and proper refinement
operator for the ALER description logic (to avoid overfitting, we disal-
low disjunctions from the target DL). Although no ménimal refinement
operators exist for ALER, we show that we can achieve minimality of
all refinement steps, except the ones that introduce the 1 concept. We
additionally prove that complete refinement operators for ALER cannot
be locally finite and suggest how this problem can be overcome by an
MDL search heuristic. We also discuss the influence of the Open World
Assumption (typically made in DLs) on example coverage.

1 Introduction

The field of machine learning has witnessed an evolution from ad-hoc specialized
systems to increasingly more general algorithms and languages. This i1s not sur-
prising since a learning algorithm aims at improving the behaviour of an existing
system. And since early systems were quite diverse, the early learning systems
were ad- hoc and thus hard to capture in a unified framework. Nevertheless, im-
portant progresses were made in the last decade towards learning in very general
settings, such as first order logic. Inductive Logic Programming (ILP) deals with
learning first order logic programs. Very recently the expressiveness of the tar-
get language was extended to prenex conjunctive normal forms [20] by allowing
existential quantifiers in the language.

Description Logics (DL), on the other hand, are a different kind of knowl-
edge representation language used for representing structural knowledge and
concept hierarchies. They represent a function-free first order fragment allow-
ing a variable-free syntax, which is considered to be important for reasons of
readability (the readability of the specifications is an important issue in knowl-
edge representation, where the expressiveness and tractability of the language
are only considered together with the simplicity and understandability of the
representations).

Description logics are subsets of first order logic containing only unary predi-
cates (called concepts and representing sets of objects in the domain) and binary
predicates (referred to as roles and representing binary relations between domain
objects). A number of concept and role constructors can be used to express
compound concept terms, which are variable-free representations of first-order
descriptions.

The research in description logics has concentrated on (practical) algorithms
and precise complexity results [9] for testing concept subsumption (inclusion)
and consistency, as well as checking the membership of objects (individuals) in
concepts for various combinations of concept and role constructors. These in-
ference services are particularly useful for managing hierarchical knowledge (de-
scription logics usually provide automatic classification of concepts in a concept
hierarchy).

Since the expressivities of Horn logic and description logics are incomparable
[5], and since one of the main limitations of Horn rules is their inability to model
and reason about value restrictions in domain with a rich hierarchical structure,
there have been several attempts at combining description logics and (function-
free) Horn rules (for example AL-log [10], CARIN [14, 15]). Reasoning in such
combined languages is in general harder than in the separate languages [15].

While deduction in description logics has been thoroughly investigated and
also while learning Horn rules has already reached a mature state (in the field
of Inductive Logic Programming), learning DL descriptions from examples has
been approached mostly by heuristic means [7, 8, 12]. For example, LCSLEARN
[8] is a bottom-up learning algorithm using least common subsumers (LCS) as
generalizations of concepts. It’s disjunctive version, LCSLEARNDISJ, is similar
to the ILP system GOLEM since LCSs play the role of least general generalizers
(LGGs). Bottom-up ILP systems like GOLEM proved quite successful in certain
applications (such as determining protein secondary structure), but they usually
produce overly specific hypotheses. In Inductive Logic Programming, this draw-
back was eliminated by top-down systems like FOIL and Progol [16], which use
downward refinement operators for exploring the space of hypotheses.

This paper aims at going beyond simple LCS-based learning in DLs by con-
structing complete upward and downward refinement operators for the descrip-
tion logic ALER. This complete refinement operator is used by a more sophis-
ticated learning algorithm to induce DL descriptions from examples.

Since description logics are a fragment of first-order logic, we could in princi-
ple translate DL expressions into prenex conjunctive form (PCNF) and use the
PCNF-refinement operator defined by [20] to refine the PCNF encoding of DL
expressions.?

Ezxample 1. We could obtain the DL definition I'n fluencial < VFriend.In fluencial
by the following squence of PCNF refinement steps:
Adding literals:

0 — Val(x)

— VeVy¥zI(z) V Fy, 2)

= VeVyVaVu(I(z) V F(y, z)) A I(u)

® We need a refinement operator for PCNF's rather than universally quantified clauses
because description logic expressions containing existential restrictions introduce ex-
istential quantifiers into their first- order encodings.

U E) Vtaj‘VyV.zVqu(I(x) V F(y, 2)) A(I(u) vV —I(v))
LV Yao(I(2) V F(x, 2)) AI(u) V =I(0))
= VaVaVo(l(2) V Fx,z)) A(I(2) V —I(v))
—)Vl‘vz(f(l‘) V F(z,z)) AN(I(2) V—I(2))
Substitutions:
= Ve(I(z) V F(z,c)) A(I(x) V—-I(c)), where ¢is a new constant
e-substitution:
3V () V F(r,p) AT() V=I(3)
eu-substitution:

= Vedy(I(z) vV F(z,y)) A(I(x) vV —I(y))

However, this straightforward approach has two disadvantages:

— The conversion from DL to PCNF can lead to an (exponential) blow-up of
the formulae. Converting everything to clausal form may spoil the structure
of the initial DL description and the conversion of the refinement back to
DL may affect the readability of the result.

— In fact, since DL descriptions are coarser grained than FOL formulae, some
PCNF refinements may not even have a DL counterpart. More precisely,
if ppr 1s a DL-refinement operator and p a PCNF-refinement operator,
then for every D € ppr(C) we have PCNF (D) € p*(PCNF(C)), where
PCNF(C) is the PCNF encoding of the DL expression C'. However, not
every D' € p(PCNF(C)) is the PCNF counterpart of a DL formula D:
D' = PCNF(D). Worse still, there can be arbitrarily long PCNF refine-
ment chains (of some DL concept) that have no DL correspondence at all.
Apparently, the PCNF refinement steps are too fine grained.

To circumvent these problems, we need to develop a refinement operator
working directly on DL formulae. But directly refining DL formulae has an even
deeper justification than just convenience. In fact, the hypotheses language (in
our case a DL) plays the role of learning bias, which determines the granularity
of the generalization steps. A very fine grained language (like FOL or PCNF)
may be unsuitable for generalizing coarser grained DL descriptions.

2 The learning problem in Description Logics

In Description Logics, concepts represent classes of objects in the domain of
interest, while roles represent binary relations in the same domain.

Complex concepts (C, D, ...) and roles (R, @, S, ...) in the ACER description
logic can be built from atomic concepts (A) and primitive roles (P) using the
following concept and the role constructors:

Concept constructor Syntax Interpretation

top concept T A

bottom concept L)

negation of atoms A A\ AT

concept conjunction C;MCy CF NCE

value restriction VR.C {re€ A|Vy(z,y) e Rt - yeCt}

existential restriction IR.C {zr € A|Jy.(z,y) € RT Ay € CT}

Role constructor Syntax Interpretation
role conjunction Ry M Ry Rf N R%

An interpretation Z = (A, %) consists of a non-empty set A (the interpreta-
tion domain) and an interpretation function -Z which maps concepts to subsets
of A and roles to subsets of A x A according to the relationships in the table
above.

A knowledge base K = (7,.A) has two components: a Thox (terminology)
7 and Abox (assertional component) A. A terminology 7 contains a set of
definitions (terminological axioms) as below, representing intensional knowledge
about classes of objects:

Definition of A Syntax Interpretation
sufficient A« C ArTDC?
necessary A—C Arcc?

necessary and sufficient A =C AT =(C*

The Abox A contains extensional information in the form of membership
assertions stating that specific individuals are instances of certain concepts or
are involved in relations with other individuals as tuples of certain roles.

Assertion Syntax Interpretation
concept instance C'(a) af e C?
role tuple R(a,b) (a,b)f € R?

An interpretation satisfies a (terminological or assertional) axiom iff the con-
ditions in the tables above hold. (The interpretation function maps individuals,
such as a and b, to domain elements such that the unique names assumption is
satisfied: af # b7 if a £ b.)

An interpretation that satisfies all the axioms of the knowledge base K is a
model of K.

Description logics represent a first-order logic fragment written in a variable-
free syntax. The first-order encoding of ALER descriptions is given below.

C C(x)
T true Definition FOL encoding
L false A« C Ve Alz) « C(x)
-A —A(z) A= C Ve Alz) > C(x)
Cl|_|02 Cl(l‘)/\CQ(l‘) A=C Y. A(l‘) HC(l‘)
VR.C Vy.R(z,y) = C(y)
AR.C Fy.R(zx,y) ANC(y) Assertion FOL encoding
Cla) Cla)
R R(x,y) R(a,b) R(a,b)

Rl I Rz Rl(l‘, y) A Rz(l‘, y)

Description logics trade expressive power for more efficient (dedicated) infer-
ence services, as well as for an increased readability. Unlike FOL reasoners, DLs
provide complete decision algorithms (which are guaranteed to terminate and
whose complexity is tightly controlled) for the following (deductive) reasoning
services:

— KB-satisfiability: K is satisfiable iff it admits a model.

— concept satisfiability: C' is satisfiable w.r.t. K iff £ admits a model Z such
that CT £ 0.

— concept equivalence: C' and D are equivalent wr.t. K, K &= C = D, iff
C?T = D? for every model T of K.

— concept subsumption: C is subsumed* by D wrt. K, K & C — D, iff
CT C DT for every model Z of K. (We sometimes also write C' C D instead
of C'—= D to emphasize that subsumption is a generality order.)

C' is strictly subsumed by D, CC Diff CC D and C # D.

— instance checking: a is an instance of C, K = C(a), iff the assertion C'(a) is

satisfied in every model of K.

All the above deductive inference services can be reduced to ALCR KB-
satisfiability [6].

Typically, terminological axioms have been used in DLs mainly for stating
constraints (in the form of necessary definitions) on concepts. In our learning
framework however, we also need sufficient definitions for classifying individuals
as being instances of a given concept. Although theoretical work has addressed
the issue of very general terminological axioms (such as general inclusions [6]),
most existing DL implementations do not allow sufficient definitions in the TBox.
However, we can “simulate” a set of sufficient definitions {A < Cy, ..., A «+ C,}
in a DL with disjunctions by using the necessary and sufficient definition A =
CiU...UC, U A where A’ is a new concept name.

In this paper we aim at endowing DLs with inductive inference services as
well. The learning problem in DLs can be stated as follows.

Definition1. Let X = (7, .A) be a DL knowledge base. A subset A" C A of the

assertions A can be viewed as (ground) examples of the target concept A:
./4/ - {A(al), A(az), ey _|A(b1), _|A(b2), . }

The DL learning problem consists in inducing a set of concept definitions for A:
T"={A + Ci, A+ (Cs,...} that covers the examples A’| i.e.

(TUT", A\A) A

In other words, we replace the specific examples A’ from the Abox with more
general Thox definitions 7. Note that, after learning, the knowledge base will
be (T U T", A), which is equivalent with (T U 7", A\ A"), since the latter is
supposed to cover the examples A’.

Alternatively, we could consider a more general setting in which Thox defini-
tions of A can also serve as examples. In this case, the examples are a knowledge
base (77, A") such that

T/:{A%Dl,A%DQ,...}gT

./4/ - {A(al), A(az), ey _|A(b1), _|A(b2), .. } g ./4
and the learning problem consists in inducing a set of concept definitions for A

T"={A+ C1, A+ Cs,...} that cover the examples (T, A"} | i.e.
(TAT)UT" AVAY (T A).

* Concept subsumption in description logics should not be confused with clause sub-
sumption in ILP and Automated Reasoning.

(The knowledge base after learning (7 U 7", A) is equivalent with (7T \ 7') U
7", A\A").) Note that, in this setting, (T\7", A\A") plays the role of background
knowledge.

The learning problem thus formulated is very similar to the standard setting
of Inductive Logic Programming. The main differences consist in the different
expressivities of the target hypotheses spaces and the Open World Assumption
(OWA) adopted by DLs (as opposed to the Closed World Assumption usually
made in (Inductive) Logic Programming).

3 ALER refinement operators

While Inductive Logic Programming (ILP) systems learn logic programs from
examples, a DL-learning system should learn DL descriptions from Abox in-
stances. Both types of learning systems traverse large spaces of hypotheses in
an attempt to come up with an optimal consistent hypothesis as fast as possi-
ble. Various heuristics can be used to guide this search, for instance based on
information gain, MDL [16], etc. A simple search algorithm (even a complete
and non-redundant one) would not do, unless it allows for a flexible traversal of
the search space, based on an external heuristic. Refinement operators allow us
to decouple the heuristic from the search algorithm. Downward (upward) refine-
ment operators construct specializations (generalizations) of hypotheses and are
usable in a top-down (respectively bottom-up) search of the space of hypotheses.

Definition2. A downward (upward) refinement operator is a mapping p from
hypotheses to sets of hypotheses (called refinements) which produces only spe-
cializations (generalizations), i.e. H' € p(H) implies H | H' (respectively
H' = H). (We shall sometimes also write H ~~ H' instead of H' € p(H).)

If the hypotheses are sufficient definitions, then A < (' is more general
than (entails) A « C5 iff € subsumes (is more general than) Cy (Cy; O Cy).

In TLP the least general generalization (lgg) of two clauses is the least general
clause that subsumes both. Note that although such an {gg 1s more general than
conjunction, taking the lgg 1s justified by the fact that the conjunction of clauses
is not a clause and would only overfit the input clauses (i.e. wouldn’t perform
any generalization leap).

Similarly with ILP, we define the lgg of two sufficient definitions as

lgg(A — Cl,A — Cz) = A« 168(01, Cz),

where lcs(Cy, Cs) is the least common subsumer [7] of the DL concepts Cy and
C5. In order to avoid overfitting and allow generalization leaps, the DL used as
a target language should not provide concept disjunctions®, since the les would
otherwise reduce to concept disjunction.

For hypotheses representing necessary definitions, A — C i1s more general
than (entails) A — C5 iff Cy is subsumed by (is more specific than) Cy (Cy C Ch).

The lgg of two necessary definitions reduces to concept conjunction
lgg(A — Cl,A — Cz) =A—->CiN Cz,

° this justifies our choice of the target language ALER instead of the more expressive
ALCR, which allows concept disjunctions.

while their most general specialization (mgs) is
mygs(A — C1, A= Cq) = A = les(Cy, Cy).

While sufficient definitions (A < Ciqyry) represent lower bounds on the target
concept A, necessary definitions (A — Clec) represent upper bounds on A, i.e.
Csuff E A E Cnec~

Note that a downward refinement operator on concept descriptions C' (going
from T to L) induces a downward refinement operator on sufficient definitions
A + C and an upward refinement operator on necessary definitions A — C'.

But unlike necessary definitions A — C1,...,; A — (},, whose conjunction
can be expressed as a single necessary definition A — €4 M ...MN CY,, sufficient
definitions like A + C4,..., A « (), cannot be expressed as a single sufficient
definition unless the language allows concept disjunction: A < CyU...UC,.5

In the following, we construct a complete downward refinement operator for

ALER concepts.

Definition 3. A downward refinement operator p on a set of concepts ordered
by the subsumption relationship J is called

— (locally) finite iff p(C) is finite for every hypothesis C.

— complete iff for all C' and D, if C' is strictly more general than D (C' 1 D),
then 3 € p*(C) such that £ = D.

— weakly complete iff p*(T) = the entire set of hypotheses.

— redundant iff there exists a refinement chain? from C} to D not going through
C5 and a refinement chain from Cs to D not going through Cf.

— minimal iff for all C', p(C) contains only downward covers® and all its ele-
ments are incomparable.

— proper iff for all ¢ and D, D € p(C) entails D C C (or, equivalently,
D£C).

(For defining the corresponding properties of upward refinement operators, we
simply need to replace the generality order J by its dual C.)

We first construct a complete but non-minimal (and thus highly redundant®)
refinement operator for which the completeness proof is rather simple. Subse-
quently, we will modify this operator (while preserving its completeness) to re-
duce its non-minimality.

® Of course, such necessary definitions could be approximated by A « les(Ch,...,Cp),
but this 1s more general than the conjunction of the original definitions.
7 A refinement chain from C to D is a sequence Cy,C1,...,Cy of hypotheses such

that ¢ = Cy,C1 € p(Cy),Cs € p(Ch),...,Ch € p(Cr—1), D = C,. Such a refinement
chain does not ‘go through” F iff F' # C; for 1 =0,..., n.

D is a downward cover of C iff C'is more general than D (C 1 D) and no E satisfies
CaOFED.

There are two possible sources of redundancy in a refinement operator:

— non-minimal refinement steps, and

— the possibility of reaching a hypothesis from two different incomparable hypothe-
ses.

Here we refer to the first type of redundancy, which can be eliminated by disallowing
non-minimal steps. (The second type of redundancy can be eliminated using the
methods from [3, 4].)

©

The refinement operator pg is given by the following refinement rules (recall
that C' ~ D means D € po(C), which entails the fact that C' subsumes D,
C JDy):

Refinement rules of pg

Lit] C~ CN L with L a DL-literal (to be defined below)
30] CN3aR.Cy~ CN3IAR.Cy if O] ~ Oy

E'R] C|_|E|R1D’\/->C|_|E|R2D lle’\ﬁRz
9] CM3R,.CiM3IRy.Co~ CTI(Ry M Ry).(C1 M Cy)
V(] CMVR.Cy~ CMIVR.Cy if Cy ~ C4
VR] CHVRlDMCHVRzD lfRz’\ﬁRl

PR]R~ RO P with P a primitive role.

The refinement rules above apply to concepts in ALER-normal form, which
can be obtained for a concept by applying the following identities as rewrite
rules'V left-to-right until they are no longer applicable:

W] VR.CAVYR.D=VYR.(CND)

[WR] YR.CNVYQ.D =YR.(CND)NYQ.D i{RCQ
[3Y] 3JR.CAVYQ.D=3R.(CND)NYQ.D i RCQ
VRT =T IRL=1

CN-C=1 CnT=C Ccnl=1

For example, the normal form of V(P; M P2). A1 MVP.—A; MVP . A M 3P A
18 V(Pl M PZ)J_ |_|VP1.(_|A1 M Az) M E'Pl.(ﬁAl I A2 I Ag)

Definition4. In the refinement rule [Lit], a DL-literal is either

— an atom (A), the negation of an atom (—A4),
— an existential restriction IP. T for a primitive role P, or

— a value restriction ¥V [[F;.L' with L’ a DL-literal, where {P, .., P,} is the
i=1
set of all primitive roles occurring in the knowledge base.

[Lit] | [Lit] [

An example of a pg-chain: T ~" A ~" A MV(P M P3). Az fL\»it] A Y(PLN
[Lit]

P3). A 3P T BE A nv(P M Py) A 3P As B AL VP, Ay P, Ay

Ay NYPL Ay N3P, Ay N3P, T 25 Ay NP A, n3p, A3 AP, A, B2 40
VP . Ay M 3Pa.(Az M Ay).

The above definition of DL-literal can be explained as follows. The addition
of new “DL-literals” in the [Lit] rule should involve not just atoms and negations
of atoms (i.e. ordinary literals), but also existential and value restrictions. For
minimality, these have to be most general w.r.t. the concept to be refined C' (as
well as non-redundant, if possible).

The most general existential restrictions take the form IP.T for a primitive
role P. But if P already occurs in some other existential restriction on the
“top level” of C' (i.e. € = €' M 3R;.Cy such that P J Ry, or, in other words,
Ry = Ry M P), then IP.T is redundant w.r.t. C. This is due to the following
result.

10 Under associativity, commutativity and idempotence of 1.

Proposition5. 3R;.C; C IR2.Ce if R1 C Ra and C1 C Cs.

Consequently, the restriction to be added IR5.C5 1s redundant w.r.t. some other
existential restriction IR;.Cy (i.e. IR,.C1 MIAR,.Cy = IR,.CY) if €1 T C and
Ry C Ra.

But disallowing the addition of 3P.T to C'in cases in which some AR;.C with
Ry C P already occurs in C' (which would ensure the properness of pg) would
unfortunately also lead to the incompleteness of py. For example, it would be
impossible to reach AP.A; M 3P.A, as a refinement of IP.A;, because the first
step in the following chain of refinements!'!:

[Lit]

3p.A, 5 3p A, nap T B

dP.A; 3P A,y
would fail, due to the redundancy of AP. T.

JP.T is redundant because it is too general. Maybe we could try to directly
add something more specific, but non-redundant (like 3P.A, in the example
above). However, determining the most general non-redundant existential re-
strictions is complicated. We will therefore allow the refinement operator p to be
improper (i.e. produce refinements D € p(C') that are equivalent to C*?), but —
in order to obtain proper refinements — we will successively apply p until a strict
refinement (i.e. some D C () is produced. The resulting refinement operator p
(the “closure” of p) will be proper, by construction. More precisely:

Definition6. D € p(C) iff there exists a refinement chain of p:

Cltatet . L[E=D]

such that C; =C fori=1,...,n—1and C, C C.

In the above-mentioned example, we have the following refinement chain of py:

c=3pa "¢ =apanarT B ¢y =3P A naP A,
for which C' = €y and €' 3 5. Therefore, C5 € pgl(C’) is a one-step refinement
of the “closure” p§l.
For determining the most general value restrictions, we consider the dual of
Proposition 5:

11 which is the only chain that can lead from 3P.A; to 3P.A; M3P. Az

12 The specific syntactic form of D is important in this case. In order to preserve com-
pleteness, we disallow the use of the following redundancy elimination rules (which
will be used only for simplifying the result returned to the user):

[Vred] VRl.Cl Il VRQ.CQ = VRl.Cl lf Rl g R2 and Cl E 02
[Elred] ElRl.Cl Il HRQ.CQ = ElRl.Cl lf Rl E R2 and Cl E 02

For example, their use would disallow obtaining 3P.A; M3P. A, from IP. A;:

3pA i 3p A, nar TR 3p A, nap 4,

because IP.A; MIP.T would be simplified by the [Ired] redundancy elimination rule
to 3P.A;, thereby making the second step ([3C1) inapplicable.

Proposition7. YR;.C1 CVR,.Cy if Ry O Ry and O C Cs.

(In fact, we can prove an even stronger result: W.r.t. an ACER knowledge base
K with no necessary definitions, K | VR;.C; C VR.Cs iff K = Ry O Rs and
K | C1 C Cs. Thus, the restriction to be added VR,.C5 is non-redundant w.r.t.
VRl.Cl (le VRl.Cl HVRQ.CQ 5_'5 VRlCl) iff Rl z Rz or 01 g Cz)

Formally, the most general value restrictions take the form VR.T. But unfor-
tunately, such value restrictions are redundant due to the identity VR. T = T.
Less redundant value restrictions are VR.L', where L’ is a DL-literal. Note that
Rin YR.L' cannot be just a primitive role P, since for example ¥(P M R').L' is
more general than (subsumes) VP.L'. With respect to R, the most general value
restriction thus involves a conjunction of all primitive roles in the knowledge

n

base V [] P;.L’, but unfortunately this is, in general, also redundant. As shown
i=1

above, redundancy can be eliminated by considering the “closure” pg& of pq.

3.1 Reducing non-minimality

It is relatively easy to show that the refinement operator py (as well as its closure
pgl) is complete. However, it is non-minimal (and thereby highly redundant), due
to the following ALER relationships:
JR.C1M3IR.Cy J3R.(CL M Cy), (1)
VR.C1MYR.Cy =VYR.(C1 N Cy). (2)

o (1) suggests that, for reasons of minimality, we should not allow in [3C] C}
inside IR.C to be refined by literal additions ([Lit]) to Cy M L:

cnarc 2 enaron),

because this single-step refinement could also be obtained with the following
sequence of smaller steps (the [3T] step is defined below):

cnar.c, % en3ar.onarT B enar.onar.. B onar. o nn).

In other words, instead of directly refining IR.Cy to IR.(C1 ML), we first
add 3R.L, and then merge IR.Cy and IR.L to FR.(C, M L) using [FT] (the

refinement step being justified by (1)).

e Similarly, (2) suggests that, for reasons of minimality, we should disallow in

[VC] C inside YR.Cy to be refined by literal additions ([Lit]) to Cy M L:

cnvr.c X envr.(o N,

because this single-step refinement could also be obtained with the following
sequence of smaller steps:

[VR] [VR]

crvr.c, W envr.ormv(RN L)L crvR.oyvR.L ' ervR.(Cy N L).

(In the last step, we applied the simplification rule [¥V].)

e Thirdly, the relationship

AR,.CT3R,.C J3(Ry M Ry).C (3)

suggests that, for reasons of minimality, we should also drop the [AR] alto-
gether. The rule [3R] of py is redundant since the single step

crnar.p B8 cn3arnp).D

can also be obtained in several steps, as follows:

crnar,.p % emar,.pnapTRY < cnar,.onapp B cnar, np).p.
Thus, instead of directly refining IR;.D to I(Ry M P).D, we first add IP.D
and then merge 3R;.D and 3P.D to I(Ry M P).D using [33] (the refinement
step being justified by (3)).

Finally, since the [Lit] step of py can add literals L that are complementary
to an already existing literal from C, we can obtain inconsistent concepts
as refinements of any C. Of course, although C' ~+ L is a valid refinement
step (because C' I L), it is not only non-minimal, but also useless if it is
applied on the “top level”!3 of the concept to be refined. However, refining
some subconcept (of the concept to be refined) to L makes sense, for example
VR.C ~ YR.L (VR.L being consistent!), although it is still non-minimal. Un-
fortunately, as we show below, all refinements C7 ~+ Cs that introduce a new
1 in (some subconcept of) Cy are always non-minimal, so we have to make
a trade-off between the minimality and the completeness of the refinement
operator. If we want to preserve completeness, we need to allow refinement
steps like €'~ L, if not on the “top level” of the concept to be refined (i.e. in
the rule [Lét]) or in [3C] (where allowing CM3R;.C' ~ CM3IR;.L = L would
lead to an inconsistency), then at least in [VC], which has to be modified as
follows:

[vC]l CNVYR.Cy~ CNYR.Cy where Cy ~ Cy or Oy = L.

However, besides this explicit introduction of L in V restrictions, we shall
require refinements to be consistent. More formally, D € p(C) iff D is ob-
tained as a refinement of C' using the refinement rules below (C' ~ D) and
D is consustent.

The resulting refinement operator p presented below treats literal additions

[Lit] in a special manner (since [Lit] is not allowed to be recursively used in [3C]
or [VC] rules). We therefore let p’ denote all the rules of p except [Lit]:

13

Refinement rules of p/

[3T] CM3R. T~ CMN3IR.L with L a DL-literal

[3C] CN3R.CL~ CTIR.Cy if Cy 4 Oy

[33] CM3R,.CiM3AR,.Cy~ C MR MRy).(C1 1Y)
[VC] CMVR.Cy~ CTIVYR.Cy i C1 4 Cyor Cy = L
[VR] C’HVRll)’\f> CHVRQD lf Rz’\ﬁ R1

[

PR]R~ RM P with P a primitive role.

i.e. to C, as opposed to its subconcepts.

In the following, we shall write C' R,gle D whenever D is obtained as a

refinement of C' using the refinement rule Rule (which can be [3T], [3C], [33],

[VC], [VR], or — in the case of p — also [Lit]). Moreover, we sometimes write C' £
D instead of D € p/(C) (denoting the fact that D is obtained as a refinement of
C' without using the [Lit] rule).

The refinement rules of the complete refinement operator p are the refinement
rules of p’ together with the [Lit] rule.

Refinement rules of p

[¢)] refinement rules of p'
[Lit] C~ CT L with L a DL-literal such that C'M L is consistent.

We recall that we have defined D € p(C) iff C'~ D and D is consistent.

3.2 Properties of p

1. Completeness. Since py is complete and the modification of py to p pre-
serves completeness, p will be complete too.
Note that we are adding DL-literals either on the “top level” of the concept
to be refined (using [Lit]), or inside IR. T restrictions (in [3T]). Such literals
can be “moved inside” V-3 -V ... chains by using the [33] refinement rule
and the [V¥] rewrite rule.

2. Properness. Like in the case of pg, p 18 not proper because the DL-literals
of the form IP.T inserted can be redundant. For achieving properness, we
should consider the closure p®, rather than simplifying these redundancies
(which would affect completeness).

3. Minimality. By construction, p has less non-minimal steps than py. How-
ever, there exists a fundamental trade-off between minimality and complete-
ness of ALER refinement operators in general (not just for ours).

Proposition8. There exist no minimal and complete ALER refinement
operators. 1

Ezample 2. The following infinite chain of minimal refinements between ¥ P. A

and VP.L

C=VPA O
Cy =VYP.(ANVYP.A) O
Cy =YP.(ANYP.(ANVP.A)) O
C3 =VP.(ANYP.(ANVP.(ANVP.A))) OJ...3
Coo =VP.L

' There cannot exist a minimal refinement step C ~» YP.L, since there exists
a sufficiently large n (for example, larger than the size of) such that ¢ O
CnyP...VP.AOVP. L

N —’

n

shows that a minimal refinement operator will not be able to reach VP.L
from VP.A in a finite number of steps, thereby being wncomplete.

On the other hand, if we insist on completeness, we should allow VP.L as a
refinement of some C}, thereby making the refinement operator non-minimal.

Our refinement operator allows VP. L as a refinement of any C; in the exam-
ple above. It is therefore non-minimal. However, we conjecture that although
there exist no minimal and complete refinement operators for ALER, there
exist refinement operators all of whose steps C' ~ D are minimal, except for
the steps involving the introduction of L in some subconcept of D (like in the
Cy = L case of the [VC] rule of our refinement operator p). This suggests
that our p is one of the best refinement operators one can hope for.

4. Local finiteness. The following example shows that there can be no locally
finite and complete ALER refinement operators.

Ezample 3. A; admits the following infinite set of minimal direct refine-
ments:

{4 NYP.A, A NYPYP.A, A NYPYPYP.A, ..}

Therefore, since p is complete, it will not be locally finite either. Appar-
ently, this seems to be a significant problem. However, as the example above
suggests, the infinite set of minimal direct refinements of some concept C'
involves increasingly longer concepts D, which will be immediately discarded
by a refinement heuristic taking into account the size of hypotheses:

F(H) =pos(H) — neg(H) — size(H)

(where pos(H) and neg(H) are the number of positive/negative examples
covered by the hypothesis H.)

Note that the lack of local finiteness and respectively minimality of a com-
plete ALER refinement operator seem to be related. (They seem to involve
value restrictions and L in an essential way!®). This situation also seems
to be related to the non-existence of the Most Specific Concept (MSC) of
individuals in some concept languages, such as ALN [1].

4 Testing example coverage

Although both Horn-clause logic programming (LP) and description logics (DL)
are fragments of first order logic and are therefore similar in certain respects,
there are also some significant differences.

— DLs make the Open World Assumption (OWA), while LP makes the Closed
World Assumption (CWA).

15 The situation is unlike in ILP, where such problems do not occur (obviously, because
value restrictions cannot be expressed in Logic Programming).

In ALER, on the other hand, we do not have infinite ascending chains [18]

because ALER does not allow the construction of cyclic descriptions (such as

R(X1, X3), R(X2, X3), R(Xs, X1), for example).

— DL definitions like A + VR.C and A — JFR.C involve existentially quantified
variables and thus cannot be expressed in pure LP. Using the meta-predicate
forall, we could approximate A + YR.C as A(X) « forall(R(X,Y),C(Y)).
But while the former definition is interpreted w.r.t. the OWA, the latter is
interpreted w.r.t. the CWA, which makes it closer to A + VK R.C. where K
is an epistemic operator as in [11]. Also, while DLs provide inference services
(like subsumption checking) to reason about such descriptions, LP systems
with the meta-predicate forall can only answer queries, but not reason about
such descriptions.

Although the OWA is sometimes preferable to the CWA'® the OWA is a
problem when testing that a definition, for example A + VR.C| covers a given
example, for instance A(a;). Examples are unavoidably incomplete. Even if all
the known R-fillers of a; from the Abox verify ("

./4 == {R(ai, bil), C(bll), ey R(ai, bm), C(bm)}

this doesn’t mean that a; verifies YR.C'7, so the antecedent VR.C of A « YR.C
will never be satisfied by an example a; (unless explicitly stated in the KB).
However, a; will verify VK R.C' because all the known R-fillers of a; verify (', so
the definition A « VK R.C' covers the example A(a;), as expected.

Thus, when checking example coverage. we need to “close” the roles (for
example, by replacing R with K R, or, equivalently, assuming that the known

fillers are all the fillers).

4.1 Example coverage for sufficient definitions

Definition9. In the case of a DL knowledge base (7, .A), for which A" =
{A(ar),..., Aap), ~Alaps1), - .., " A(aptn)} C A are considered (positive and
negative) examples, we say that the sufficient definition A < C' covers the (pos-
itive or negative) example a; iff
{TU{A « C}HA\A) E A(a),
which is equivalent with the inconsistency of
(T U{A + C} (A\A)U{=A(a;)}),
where ¢l(T, A) denotes the role-closure of the knowledge base (7,.4) (which

amounts to replacing roles R with K R).

Ezample 4. Consider the following knowledge base (7, .A) with an empty Tbhox
(T = 0) and the Abox!®

./4: {Ip(j)aR(])aF(]a]l)aI(]l)aF(]aJZ)aI(]Z)a
~1P(f), R(f),
—IP(m), R(m), F(m,mq), I(m1), F(m, ms),
—IP(h), F(h, h1),I(h1), F(h, ha), I(h2)},

8 For example, when expressing constraints on role fillers using value restrictions.

7 because of the OWA, there could exist, in principle, a yet unknown R-filler of a; not
verifying C.

18 Where the individuals j, m, f, h stand for John, Mary, Fred, Helen, while the atomic
concepts [P, R, I stand for Influencial_Person, Rich, Influencial and the primitive
role F for Friend.

where A" = {IP(j),~IP(f),~IP(m),~IP(h)} are considered as positive and
negative examples.

The following sufficient definition covers all positive examples while avoiding
all (not covering any) negative examples:

IP « RNOYF.INAF.I (4)

(4) covers the positive example I P(j) because ({IP + ROVK F.INAKF.T}, (A\
AYU{=TP(j)}) is inconsistent, since = R(j), (VK F.I)(j), (-IK F.I)(j) are all
inconsistent:
— = R(j) because R(j) € A\ A
— (VK F.I)(j), i.e. (AKF.—I)(j) because all the known F-fillers of j (namely
J1 and ja) are T
— (F3AKF.I)(j), i.e. (VKF.AI)(j) because there exists an F-filler of j (for ex-
ample j1) that is I.

Note that the more general definition I P < RMVF.T covers the negative ex-
ample =T P(f) because ({IP « ROVK F.T}, (A\A)U{=IP(f)}) is inconsistent,
since = R(f), (-VKF.I)(f) are both inconsistent:

— = R(f) because R(f) € A\ A’
— (VK FE.I)(f), i.e. (BKF.=I)(f) because there exists no known F-filler of f.

And since the more specific (4) does not cover the negative example =1 P(f)
(due to the consistency of (=3IKF.I)(f)), we conclude that IF.I discriminates
between the positive example IP(j) and the negative example =/ P(f) and is
therefore necessary in (4).

IP « VP.IM3F.I (which is also more general than (4)) covers the negative
example =T P(h) because ({IP « VYKF.IM3IKF.I}, (A\ A)U {=IP(h)}) is
inconsistent, since (=VK F.I)(h), (-3K F.I)(h) are inconsistent:

— (VK F.I)(R), i.e. (K F.=I)(h) because all the known F-fillers of h (namely
h1 and hg) are T

— (-3AKF.I)(R), i.e. (VKF.I)(h) because there exists an F-filler of A (for
example hy) that is .

And since the more specific (4) does not cover the negative example ~TP(h)
(due to the consistency of =R(h)), we conclude that R discriminates between
the positive example IP(j) and the negative example =T P(h) and is therefore
necessary in (4).

IP « RM3F.I (which is also more general than (4)) covers the negative
example =T P(m) because ({IP « ROIKF.I}, (A\ A) U{-TP(m)}) is incon-
sistent, since = R(m), (-3K F.I)(m) are inconsistent:

— =R(m) because R(m) € A\ A’
— (-3AKF.I)(m), i.e. (VK F.~I)(m) because there exists an F-filler of m (namely

my) that is I.

And since the more specific (4) does not cover the negative example =1 P(m)
(due to the consistency of (=VK F.T)(m)), we conclude that VF.I discriminates
between the positive example TP(j) and the negative example =/ P(m) and is
therefore necessary in (4).

The right-hand side of (4) is obtained by the refinement operator p from T
by the following sequence of steps:

=T e =r" ¢, = Rnvrr " ¢y = RnvEINAET
RMOVF.IN3FI.

All C; above cover the positive example IP(j). However, Cy covers all 3
negative examples, Cy only =/ P(f), =IP(m), C2 only =1 P(f), while C3 avoids
all negative examples and would be returned as a solution: IP « Cj.

(3v]

4.2 Verifying necessary definitions

While sufficient definitions can be used to classify individuals as instances of the
target concept, necessary definitions impose constraints on the instances of the
target concept. Roughly speaking, a necessary definition A — C' is verified iff it
is entailed by the knowledge base: (T, A) = (A — C), which can be reduced to
the inconsistency of AM—C w.r.t. (T, .A), i.e. to the non-existence of an instance
z of AM=C. Such an z could be either ¢;'°, another known individual, or a new
one. Since the examples a; of A are unavoidably incomplete, A — C' will not
be provable for all imaginable instances #. Equivalently, (4 M =C)(x) will not
(and need not) be inconsistent for any #. In fact, we need to prove A — C (or,
equivalently, to check the inconsistency of AM—C') only for the known examples
a; of A. This amounts to proving (KA) — (', i.e. to considering the closure of
the target concept A. Since A(a;) holds anyway, we just need to prove C(a;) for
all positive examples a; of A. More precisely:

Definition10. The necessary definition A — C'is verified in (T, A) iff VA(a;) €
A’ el{T, AU {=C(a;)}) is inconsistent.

Note that the above definition can be considered to obey the so-called ‘prov-
ability view’ of constraints. (Adopting the weaker ‘consistency view’ may be too
weak in our learning framework: assuming that a constraint is verified just be-
cause 1t is consistent with the examples may lead to the adoption of too strong
— and thus unjustified — constraints.)

5 Learning in DLs using refinement operators

A top-down DL learning algorithm would simply refine a very general definition
of the target concept, like A < T, using a downward refinement operator?’
until it covers no negative examples. (A heuristic maximizing the number of
positive examples covered, while minimizing the size of the definitions as well
as the number of negative examples covered can be used to guide the search.)
If this first covering step still leaves some positive examples uncovered, then
subsequent covering steps will be employed to learn additional definitions until
either all positive examples are covered, or the learning process fails due to the
impossibility to cover certain positive examples without also covering (some)
negative examples.

19 Assuming that the known positive examples of A are A’ = {A(a1),..., A(an)}.

20 The inherent redundancy of the complete refinement operator p needs to be elimi-
nated by converting it into a weakly complete operator. This can be done using the
methods from [3, 4].

Note that our approach avoids the difficulties faced by bottom-up approaches,
which need to compute the minimal Thox generalizations M SC'(a;) (called most
specific concepts [8, 1]) of the Abox examples A(a;). Most existing bottom-up
approaches (such as [8]) then use least common subsumers (LCS) [7, 8, 2] to
generalize the MSC descriptions. Unfortunately, such approaches tend to produce
overly specific concept definitions. On the other hand, by reverting the arrows
in our downward refinement operator, we obtain an upward refinement operator
for the description logic ALER which can be used to search the space of DL
descriptions in a more flexible way than by using LCSs and also without being
limited to considering only least generalizations.

6 Conclusions

This paper can be viewed as an attempt to apply ILP learning methods to
description logics — a widely used knowledge representation formalism that is
different from the language of Horn clauses, traditionally employed in ILP. Ex-
tending ILP learning methods to description logics is important for at least two
reasons. First, description logics represent a new sort of learning bias, which
necessitates a more sophisticated refinement operator (than typical ILP refine-
ment operators). Second, description logics provide constructs, such as value
restrictions, which cannot be expressed in Horn logic, thereby enhancing the
expressivity of the language and making it more suitable for applications that
involve rich hierarchical knowledge.

Since Horn logic (HL) and description logics (DLs) are complementary, devel-
oping refinement operators for DLs represents a significant step towards learning
in an integrated framework comprising both HL. and DL. Due to the differences
in expressivities between DLs and HL, constructing DL and respectively HL re-
finement operators encounter different problems. Neither can be minimal (while
preserving completeness), but for different reasons: in HL we can have infinite as-
cending chains, while in our ALER description logic we cannot, non-minimality
being due to the interplay of value restrictions and L. We also discuss the im-
pact of the Open World Assumption (usually employed in DLs) on learning and
especially on example coverage, but this issue needs further investigation.

Since learning in even a very simple DL allowing for definitions of the form
C +3R.(A1M...MA,) is NP-hard (Theorem 2 of [13]), learning in our frame-
work will be NP-hard as well. However, we prefer to preserve a certain expressive-
ness of the language and plan to study more deeply the average case tractability
of our approach (for which worst-case intractability is less relevant).

We are currently exploring methods of taking into account Tbox definitions
T as background knowledge during refinement, as we plan to further reduce the
non-minimality of our refinement operator w.r.t. 7 # (§ (a refinement step that
is minimal w.r.t. 7 = @ could be non-minimal when taking into account the
definitions of some non-empty 7). Note that completeness is not an issue in
this case, since a refinement operator that is complete w.r.t. 7 = §§ will remain
complete w.r.t. a non-empty terminology.

Acknowledgments. The first author is grateful to Doina Tilivea for discus-
sions. Thanks are also due to the anonymous reviewers for their suggestions and
constructive criticism.

References

1. Baader F., Kiisters R. Least common subsumer computation w.r.t. cyclic ALN-
terminologies. In Proc. Int. Workshop on Description Logics (DL’98), Trento, Italy.

2. Baader F., R. Kusters, R. Molitor. Computing Least Common Subsumers in De-
scription Logics with Fxistential Restrictions. Proc. [JCAI’99, pp. 96-101.

3. Badea Liviu, Stanciu Monica. Refinement Operators Can Be (Weakly) Perfect. Proc.
ILP-99, LNAI 1631, Springer, 1999, pp. 21-32.

4. Badea Liviu. Perfect Refinement Operators Can Be Flexible. Proc. ECAI-2000.

5. Borgida A. On the relative Expressiveness of Description Logics and Predicate Log-
tcs. Artificial Intelligence, Vol. 82, Number 1-2, pp. 353-367, 1996.

6. Buchheit M., F. Donini, A. Schaerf. Decidable reasoning in terminological knowledge
representation systems. J. Artificial Intelligence Research, 1:109-138, 1993.

7. Cohen W.W., A. Borgida, H. Hirsh. Computing least common subsumers in descrip-
tion logics. Proc. AAAI-92, San Jose, California, 1992.

8. Cohen W.W., H. Hirsh. Learning the CLASSIC description logic: Theoretical and
experimental results. In Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the Fourth International Conference, pp. 121-133, 1994.

9. Donini F.M., M. Lenzerini, D. Nardi, W. Nutt. The complexity of concept languages.
Information and Computation, 134:1-58, 1997.

10. Donini F.M., M. Lenzerini, D. Nardi, A. Schaerf AL-log: integrating datalog and
description logics. Journal of Intelligent Information Systems, 10:227-252, 1998.

11. Donini F.M., M. Lenzerini, D. Nardi, A. Schaerf, W. Nutt. An epistemic operator
for description logics. Artificial Intelligence, 100 (1-2), 225-274, 1998.

12. Kietz J.U., Morik K. A Polynomial Approach to the Constructive Induction of
Structural Knowledge. Machine Learning, Vol. 14, pp. 193-217, 1994.

13. Kietz J.U. Some lower-bounds for the computational complexity of Inductive Logic
Programming. Proc. ECML’93, LNAI 667, Springer, 1993.

14. Levy A., M.C. Rousset. CARIN: A Representation Language Combining Horn
Rules and Description Logics. Proc. ECAI-96, Budapest, 1996.

15. Levy A., M.C. Rousset. The Limits on Combining Horn Rules with Description
Logics. Proc. AAAI-96, Portland, 1996.

16. Muggleton S. Inverse entailment and Progol. New Generation Computing Journal,
13:245-286, 1995.

17. van der Laag P., S.H. Nienhuys-Cheng. A Note on Ideal Refinement Operators in
Inductive Logic Programming. Proceedings [L.P-94, 247-260.

18. van der Laag P., S.H. Nienhuys-Cheng. Fzistence and Nonexistence of Complete
Refinement Operators. ECML-94, 307-322.

19. Nienhuys-Cheng S.H., de Wolf R. Foundations of Inductive Logic Programming.
LNAT 1228, Springer Verlag, 1997.

20. Nienhuys-Cheng S.-H., W. Van Laer, J. Ramon, and L. De Raedt. Generalizing
Refinement Operators to Learn Prenex Conjunctive Normal Forms. Proc. 1LP-99,
LNAT 1631, Springer, 1999, pp. 245-256.

This article was processed using the ¥TEX macro package with LLNCS style

