Intelligent Information Integration as a
Constraint Handling Problem

Liviu Badea Doina Tilivea

Al Lab, National Institute for Research and Development in Informatics
8-10 Averescu Blvd., Bucharest, Romania
badea@ici.ro

Abstract. Intelligent Information Integration (I°) aims at combining heteroge-
neous and distributed information sources by explicitly representing and rea-
soning about their content, giving the user the illusion of interacting with a uni-
form system. In this paper we show how query planning in such a system can
be reduced to a constraint handling problem. Conceptually, our approach relies
on a generalized abductive reasoning mechanism involving so called partially
open predicates, which support a seamless combination of backward (goal-
directed) and forward reasoning. The original aspects of our approach consist
in the early detection of (plan) inconsistencies using forward propagation of
constraints as well as in the seamless interleaving of query planning and execu-
tion. Unlike other specialized query planning algorithms, for which domain
reasoning and query planning are only loosely coupled, our encoding of source
and domain models into Constraint Handling Rules allows us to fully and effi-
ciently exploit existing domain knowledge. The ability to automatically derive
source interactions from domain models (ontologies) enhances the flexibility of
modeling.

1 Introduction and motivation

The integration of hybrid modules, components and software systems, possibly de-
veloped by different software providers, is a notoriously difficult task, involving
various complex technical issues (such as distribution, different programming lan-
guages, environments and even operating systems) as well as conceptual problems
(such as different data models, semantic mismatches, etc.).

Solving the conceptual problems requires the development of an explicit (declara-
tive) common knowledge model of the systems to be integrated. Such a model is used
(by a so-called mediator [Wie92]) not only during the development of the integrated
system, but also at query time, when it can be manipulated by a query planner to
solve problems that could not have been solved by any of the specific information
sources alone and might even not have been foreseeable by the system integrator.

The query planner of the mediator transforms a user query into a sequence of in-
formation-source specific queries that jointly solve the original query. The query
execution module performs the actual source accesses, while the result integration

component combines the results obtained from the information sources in a globally
consistent result.

In this paper we present an original encoding of query planning as a constraint
handling problem. Conceptually, our approach relies on a generalized abductive rea-
soning mechanism involving so called partially open predicates, which support a
seamless combination of backward (goal-directed) and forward reasoning. The origi-
nal aspect of our approach consists in the early detection of (plan) inconsistencies
using forward propagation of constraints. This is especially important since the main
purpose of query planning is to prevent as many potential failures as possible at the
(early) planning stage, i.e. before actually accessing the information sources. The
query planner has been implemented using Constraint Handling Rules (CHR) [Fr98]
and used within a complete Information Integration System, called SILK [S].

Unlike other specialized query planning algorithms, for which domain reasoning
and query planning are only loosely coupled, our encoding of source and domain
models into Constraint Handling Rules allows us to fully and efficiently exploit exist-
ing domain knowledge. !

CHRs also enable a natural interleaving of query planning with execution. It would
be unrealistic to assume that the query planning stage will be able to construct fool-
proof plans, i.e. plans that do not fail (especially because of the incomplete knowl-
edge available to the planner). Therefore, we should expect failures and hence pro-
vide mechanisms for replanning during execution.

As opposed to many other more procedural approaches to information integration
(e.g. [GPQY7]), we present an approach to I’ using logic not just for modeling infor-
mation sources and domains, but also for reasoning about them, the main advantage
of such an approach being its flexibility. (For efficiency reasons, we use a Constraint
Logic Programming environment.)

2 Modeling information sources

While the data content of an information source can be represented by a number of
source predicates s, the user might prefer to have a uniform interface to all the sources
instead of directly querying the sources s. In fact, she may not even want to be aware
of the structure of the information sources. Therefore, the mediator uses a uniform
knowledge representation language in terms of so-called "base predicates”, which
represent the user's perspective on the given domain.

There are two main viewpoints on representing sources and their interactions:
"Global as View" and "Local as View" [Lev00]. In the Global As View (GAV) ap-
proach, interactions between sources have to be described explicitly for every combi-
nation of sources that interact. For example

s;(Empl,Department,...) n s)(Empl,Project,...) — proj dept(Project, Department). (1)

! For example, the Information Manifold [LRO96] uses a specialised query planning algorithm
only loosely coupled with the domain reasoning module (CARIN). A tighter integration of
domain reasoning with query planning allows us to discover inconsistent plans earlier.

expresses the fact that a particular combination of s; and s, has property
proj_dept(Project, Department) (which is a “base predicate”).

The need to consider all relevant combinations of sources has the obvious draw-
back that adding a new source is complicated, since it involves considering all poten-
tial interactions with the other sources. (There can be an exponential number of such
interactions.)

On the other hand, in the Local As View (LAV) approach, the interactions between
sources are being handled by the query planner at the mediator level. All that needs to
be done when adding a new source is to describe all its relevant properties (in the
mediator language, i.e. in terms of base predicates). For example, one would inde-
pendently describe the sources s; and s, using the implications

s;(Employee, Department,...) — emp_dept(Employee, Department)

so(Employee, Project,...) — emp_proj(Employee, Project)
and delegate the detection of potential interactions between them to the query plan-
ner, which would need domain specific descriptions of the base predicates, such as

emp_dept(Emp,Dept) A emp_proj(Emp,Proj) — proj_dept(Proj, Dept). 2)

Note that the LAV approach only shifts the description of source interactions from
the source level (1) to the level of base predicates (2). This is not just a simple techni-
cal trick, since descriptions of the form (2) would be part of the domain ontology
(which would be developed once and for all and therefore wouldn't change as new
sources are added). In the LAV approach, the description of the sources is easier,
since the knowledge engineer only has to describe the properties of the newly added
source in terms of base predicates, without having to worry about potential source
interactions. This latter task is delegated to the query planner.

The query planner presented in this paper can deal with both GAV and LAV ap-
proaches. However, we encourage the use of LAV, since it spares the knowledge
engineer the effort of explicitly determining and representing the source interactions.

We start by giving the intuition behind our modeling of source descriptions and
their encoding using Constraint Handling Rules (CHR) and Constraint Logic Pro-
gramming (CLP).

Constraint Handling Rules (see [Fr98] for more details) represent a flexible ap-
proach to developing user-defined constraint solvers in a declarative language. As
opposed to typical constraint solvers, which are black boxes, CHRs represent a 'no-
box' approach to CLP.

CHRs can be either simplification or propagation rules.

A simplification rule Head <=> Guard | Body replaces the head constraints by the
body provided the guard is true (the Head may contain multiple CHR constraint at-
oms).

Propagation rules Head ==> Guard | Body add the body constraints to the con-
straint store without deleting the head constraints (whenever the guard is true). A
third, hybrid type of rules, simpagation rules Head; \ Head, <=> Guard | Body re-
place Head, by Body (while preserving Head,) if Guard is true. (Guards are optional
in all types of rules.)

Now, a Local As View source description like s(X) — b,(X), by(X), ... 3)
is implemented using a CHR propagation rule s(X) ==> b)(X), by(X), ... 4

which ensures that every time a query is reduced to a source predicate s(X), the
source's properties are automatically propagated (thereby enabling the discovery of
potential inconsistencies). Propagation rules however, capture only one direction of
the implication (3). Since they are unable to deal with the backward direction of (3),
they are inappropriate for regressing a goal in terms of base predicates to a subgoal in
terms of the source predicate. This has to be explicitly implemented using goal re-
gression rules of the form by(X) :- s(X). (®)]

Unfortunately, this simple approach may loop, since it doesn’t distinguish between
goals (which have to be achieved) and facts that are simply propagated forward. We
address this problem by separating goals (denoted simply as Gp) from facts, which
are asserted to hold, represented as Hp. (In the implementation, Hp is represented as a
CHR constraint, holds(p), while goals Gp are represented explicitly as goal(p).)
Propagation rules involve facts: Hs(X) ==> Hb)(X), Hby(X), ... (6)
while goal regression rules involve goals: Gb{(X) <=> Gs(X). @)

The following schema (w.r.t. p) takes care of the consistency between goals and
facts that simply hold (since goals will be achieved eventually, they also have to
hold): Gp ==> Hp ®)
Note that rule (8) should have a higher priority than (7) (Hp should be propagated
before the goal is replaced by a subgoal in (7)).

We formalize the above distinction between goals and facts by introducing the no-
tion of open predicates. The query planner essentially interleaves two reasoning
phases: goal regression and forward propagation of properties ("saturation"). While
goal regression uses the current "closure" (body) of a given base predicate, forward
propagation may produce new instances of the base predicate (which have to hold for
the partial query plan to be consistent). Thus, we need to be able not only to refer to
the closure of a given predicate, but also to allow it to be "open".

2.1 Open predicates

In Logic Programming, normal predicates are closed: their definition is assumed to be
complete (Clark completion). On the other hand, abducibles in Abductive Logic Pro-
gramming (ALP) [KKT98] are completely open, i.e. they can have any extension
consistent with the integrity constraints. For dealing in a formal manner with forward
propagation rules in an abductive framework, we need to allow a generalization of
abducibles, namely (partially) open predicates.

Unlike normal abducibles, open predicates can have definitions p < Body, but
these are not considered to be complete, since during the problem solving process we
can add (by forward propagation) new abductive instances of p. The definition of an
open predicate therefore only partially constrains its extension.

In our CHR embedding of the abductive procedure we use two types of con-
straints, Gp and Hp, for each open predicate p. While Hp represents facts explicitly
propagated (abduced), Gp refers to the current closure of the predicate p (i.e. the
explicit definition of p together with the explicitly abduced literals Hp). Thus, infor-
mally?, the extension of p is Gp = def(p) v Hp.

2 For lack of space, we defer the formalization of these notions to the full paper.

While propagating Hp amounts to simply assuming p to hold (abduction), propa-
gating Gp amounts to trying to prove p either by using its definition def(p), or by
reusing an already abduced fact Hp. This distinction ensures that our CHR embed-
ding conforms to the usual ‘propertyhood view’ on integrity constraints. In fact, our
description rules presented below can be viewed as a generalization of abductive
logic programs with integrity constraints interpreted w.r.t. the ‘propertyhood view’>.

Definition 1. M(A) is a generalized stable model of the abductive logic program
(P,A,I) for the abductive explanation A C A iff (1) M(A) is a stable model of PUA,
and (2) M(A) E 1.

The distinction between propagating Hp and Gp respectively can be explained best
using an example. Earning a certain income should propagate the obligation of hav-
ing one's taxes paid (represented by the closure Gtaxes_paid). On the other hand, one
could imagine a scenario in which the taxes are paid Htaxes_paid, without having the
corresponding obligation (goal) Gtaxes_paid (for example, as a side-effect of a dif-
ferent goal).

The use of open predicates allows mixing forward propagation of abduced predi-
cates Hp with backward reasoning using the closures Gp. Forward propagation can
be implemented using CHR propagation rules, while backward reasoning involves
unfolding predicates with their definitions. The definition def(p, Body) of a predicate p
is obtained by Clark completion of its ‘if” definitions. For each such predicate we will
have an unfolding rule (similar to p :- Body) implemented as a CHR simplification

rule: Gp <=> def(p,Body) | GBody,
but also a CHR simpagation rule* for matching a goal Gp with any existing abduced
facts Hp: Hp(X))\ Gp(X;) <=> X=X, 5 X,;#X5, Gp(X;). (re)

This rule should have a higher priority than the unfolding rule in order to avoid re-
achieving an already achieved goal. Note that, for completeness, we are leaving open
the possibility of achieving Gp(X>) using its definition or reusing other abduced facts.

Our treatment of open predicates Gp = def(p) v Hp is subtly different from the
usual method [KKT98] of dealing with (partially) open predicates p, where a new
predicate name p' (similar to our Hp) is introduced and the clause p «— p’ is added to
the definition of p: {p<—Def,p—p'}. (%)

The difference is that whenever we refer to Gp we are implicitly trying to prove p,
either by using its definition def(p) or by reusing an already abduced fact Hp, but
without allowing such an Hp to be abduced in order to prove Gp (whereas in (%)
treating p < p'as a program clause would allow p’ to be abduced when trying to
prove p). This is crucial for ensuring a correct distinction® between goals Gp and
abducibles Hp mentioned above (otherwise we would treat the propagation of goals

3 The detailed presentation of the semantics is outside the scope of this paper and will be pur-
sued elsewhere. Briefly, the goal regression rules play make up the program P, the sources
are regarded as (temporary) abducibles A, while the forward propagation rules play the role
of the ALP integrity constraints /. Our notion of integrity constraints is however more gen-
eral than that used in ALP.

4 The rule is more complicated in practice, due to implementation details.

3 This distinction is essential only for partially open predicates and not for completely open
predicates (abducibles).

and obligations incorrectly). Without making this distinction, we wouldn’t even be
able to refer to the current closure of p.

Besides source descriptions (3), we also have to be able to represent logical con-
straints between base predicates (for example concept hierarchies, integrity con-
straints, etc.). The same implementation strategy can be used in this case. For exam-
ple, an implication of the form b,(X,Y) A by(Y,Z) — b(X,Z) can be represented using
a CHR propagation rule Hb,(X,Y), Hb,(Y,Z) ==> Hb(X,Z) and a goal regression rule
Gb(X,Z) <=>Gb,(X)Y), Gby(Y,2).

Example 1. Assume that in a software company we want to allocate qualified personnel to a
new project while not exceeding a given budget. Assume that the company's information sys-
tem contains separate databases for each department (in our case administrative and develop-
ment, which are regarded as source predicates), as well as a database of students (part-time
employees) who could be employed in the project, in case the overall project budget is ex-
ceeded by using full-time personnel (students are assumed to have a lower salary).

The end user of the integrated system (for example the company's manager) would use base
predicates such as: employee(Employee), qualification(Employee, Qualification), sal-
ary(Employee, Salary). The following description rules are used to represent domain-specific
knowledge (descriptions for base predicates):

qualification(Empl, 'C") — programmer(Empl) (el)
qualification(Empl, 'Prolog") — programmer(Empl) (e2)
programmer(Empll), non_programmer(Empl2) — Empll# Empl2 (e3)

The following description rules are used to characterize the source predicates:
administrative(Empl, Qual, Sal) — employee(Empl), qualification(Empl, Qual),

salary(Empl, Sal), non_programmer(Empl). (e4)
development(Empl, Qual, Sal) — employee(Empl), qualification(Empl, Qual),
salary(Empl, Sal), Sal > 2000, programmer(Empl). (e3)
student(Empl, Qual) — employee(Empl), qualification(Empl, Qual),
salary(Empl, Sal), Sal = 1000, programmer(Empl). (c6)

The above description rules assert that:
e people with qualifications in C and Prolog are programmers, while programmers and non-
programmers are disjoint concepts.
e administrative employees are non-programmers
e employees from the development department are programmers (with a salary over 2000)
e students are also programmers and are assumed to have a fixed salary of 1000.
The user might want to allocate two employees Empl] and Empl2 with qualifications 'C’ and
'"Prolog’ such that the sum of their salaries does not exceed 3500 (see continuation of the Ex-
ample in Section 3.3).

3 Query planning with Constraint Handling Rules

In the following, we concentrate on a more detailed description of the representation
language for source descriptions and domain models, as well as on their implementa-
tion using Constraint Handling Rules.

3.1 Base predicates, source predicates and description rules

The content of the various information sources is represented by so-called source
predicates, which will be described at a declarative level in terms of the so-called
“base predicates”. More precisely, we distinguish between content predicates and
constraint predicates.

Content predicates (denoted in the following with p, g, possibly with subscripts)
are predicates which directly or indirectly represent the content of information
sources. They can be either source predicates or base predicates.

Source predicates (denoted with s) directly represent the content of (part of) an in-
formation source (for example, a table in a relational database, or the services pro-
vided by the interface of a procedural application). Their definitions (bodies) are not
explicit at the mediator level, but can be accessed by querying their associated infor-
mation source.

Base predicates (denoted with b) are user-defined predicates for describing the
domain, as well as the information content of the sources.

As opposed to content predicates, constraint predicates (denoted by c) are used to
express specific constraints on the content predicate descriptions.

For example, a source s containing information about underpaid employees (with a
salary below 1000), would be described as:

s(Name, Salary) — employee(Name) A salary(Name, Salary) A Salary<1000.

(In the above, s is a source predicate, employee and salary are base predicates, while
'<'is a constraint predicate.)

Constraint predicates can be either internal (treatable internally by the query en-
gine of the source), or external (constraints that can only be verified at the mediator
level, for example by the built-in constraint solvers of the host CLP environment).
Constraints treatable internally by the sources can be verified at the source level (by
the query engines of the sources), but they are also propagated at the mediator (CLP)
level. Constraints treatable only externally need to be both verified and propagated at
the mediator level.

A complete description of the source predicates in terms of base predicates is nei-
ther possible nor useful, since in general there are too many details of the functioning
of the sources that are either unknown to the user, or irrelevant from the point of view
of the application. Thus, instead of complete (iff) descriptions, we shall specify only
approximate (necessary) definitions of the source predicates in terms of base predi-
cates (thus, only the relevant features of the sources will be encoded).

In the following, we use a uniform notation for the domain and source description
rules:

VX, pi(X) A > 3Z oY1) A Asi(Yi) A Ac;(Y)AL (9)

where X = U)_(,', Y= U)_/ s Z=Y - X (with variable tuples viewed as sets).
i J
Description rules are necessary definitions of (combinations of) source or base
predicates in terms of base predicates and constraints. (Source descriptions are special

cases of description rules. Integrity constraints are description rules with only con-
straints — typically fail' — in the consequent.®)

Normally, source descriptions are coarser grained than the actual information con-
tent of the sources (they abstract away the irrelevant details). However, there are
situations in which a source description is finer grained than the explicit source con-
tent, typically due to (meta-level) knowledge about the content of the source that is
not explicitly contained in the source.

Example 2. A source of cheap cars may not contain the actual prices of the cars, but we may
possess the (meta-level) knowledge that these prices are below 10000:
s(Model) — 3P. car(Model) n price(Model, P) A P<10000.

Such conceptual descriptions that are finer grained than the source content involve
existential variables in the consequent and are, in a sense to be made precise shortly,
"nondecomposable".

Occurrences of source predicates in the consequent do not represent updates to the
corresponding source. Rather, they are typically used for conversions from the format
used in sources to the common format used at the mediator level, or more generally
for expressing general constraints that are encoded in the given source predicate.
These need to be verified rather than propagated.

Example 3. Prices of cars may be stored in a different currency, for which a source s_exchange
(functioning as a conversion table) is available:
s(Model, Price) — 3P. car(Model) A s_exchange(Price, P) A price(Model, P).

Description rules provide a convenient and very expressive way of describing sources
as well as the domain knowledge.

3.2 Implementing description rules in CHR

Due to their flexibility and declarative nature, constraint Handling Rules (CHRs)
[Fr98] represent an ideal framework for implementing the reasoning mechanism of
the query planner.
A description rule of the form (9) will be encoded in CHR using
e goal regression rules: for reducing queries given in terms of base predicates to
queries in terms of source predicates, and
e propagation rules: for completing (intermediate) descriptions in order to allow
the discovery of potential inconsistencies.
An implication of the form p — g, A g2 A ... is decomposable into a conjunction of
implications
® — q1) A (p = g2) A ... whenever the consequent includes no existential variables.
In the general case, however, we need to Skolemize the description rules (9) before
decomposing them (decomposition being necessary for generating goal regression
rules):

VX (XD A = e Ask (b Z, X) A by (YD) Ao s; (Y i) A (Y) A (10)

© An integrity constraint of the form «p(X),q(X) could be written either as
p(X1),q(X2) ==> X1#X2 or as p(X),q(X)==> fail.

where sk (k, Zk,?) denotes the fact that the existential variable Z; depends on the
variable tuple X. Essentially, this is a way of writing the Skolem term 7, = f, (})

using a predicate sk instead of a function f;. This simplifies our dealing with such
Skolems in our CHR implementation, in which sk is a CHR constraint subject to the
following propagation rule, which ensures that fi,(X1)=£i(X2) if X1=X2:

sk(K,Z1,X), sk(K,Z2,X) ==> Z1=Z2. (sk)

3.2.1. Goal regression rules

Now, (10) is decomposable into separate implications
VX. piX 1) A = consk(k,Zy, X) Ao Ab(Y). (D

for each base predicate b, occurring in the consequent of (10) (in the consequent of
(11) we only keep the Skolems for which z, Y.

(11) can easily be viewed as a goal regression rule for b;:
Gb,(Y:) <= ...,sk(k,Z,,X) ..., Gp,(X1),... (12)

Since (10) is not a sufficient definition for the source predicates s; appearing in its
consequent (s; playing here the role of constraints), we do not generate goal regres-
sion rules of the form (11) or (12) for s;. Neither do we produce such rules for the
constraints c;.

3.2.2 Propagation rules

A set of subgoals in terms of source predicates (induced by backward chaining from
the user query using the goal regression rules) may not necessarily be consistent.
Applying (10) as forward propagation rules ensures the completion ("saturation") of
the (partial) query plan and enables detecting potential conflicts before actually ac-
cessing the sources.

As base predicates p are subject not just to normal backward reasoning, but also to
forward propagation, they will be treated as open predicates. The forward propagation
rules will thus involve their "open" part Hp:

Hp (X) Ao => sk (k,Z,, X),oo, HD (Y 1),...,Gs,(Y1),...,.Cc (Y ;). (13)

Note that source predicate occurrences s, (7,-) in the consequent refer to the "clo-

sure" Gs; of s; (rather than their open parts Hs;), since sources in the consequent are
used as constraints to be verified, rather than propagated.

We have already mentioned the fact that we have to distinguish between goals in-
volving a given predicate p (which will be treated by a mechanism similar to the
normal Prolog backward chaining mechanism) and the instances Hp of p, which trig-
ger forward propagation rules. Operationally speaking, while goals Gp are "con-
sumed" during goal regression, the fact that p holds should persist even after the goal
has been achieved, to enable the activation of the forward propagation rules of p.
Goals p will therefore have to propagate Hp (using rule (8)): Gp ==> Hp before
applying the goal regression rules for p: Gp <=> body(p).

A predicate p for which Hp is propagated only by rule (8) is closed (Gp = body(p))
since all propagated Hp instances will verify body(p). Propagating Hp instances in
the consequents of other propagation rules makes p an open predicate.

Cc; in (13) represent constraint predicate calls (since our system is implemented in
the CLP environment of Sicstus Prolog [Sics], we assume the availability of host
constraints solvers for the usual constraint predicates).

Source and domain models are described using rules of the form (9), which are
then automatically translated by the system into CHR goal regression and propagation
rules (12) and (13). (The additional problem-independent rules (8), (re) and (sk) are
used for obtaining the complete CHR encoding of a model.)

3.3 Source capabilities and query splitting

Instead of directly executing source predicate calls (by actually accessing the
sources), sub-goals s (Y) are delayed to enable their aggregation into more specific

sub-queries, thereby transporting less tuples at the mediator level. The goal regression
rules for source predicates s post constraints of the form Ss, which denote the delayed
source call: Gs(Y) <=> Ss(Y).

A query plan consists of a number of such source predicate calls Ss; (Y i) as well
as additional constraints C¢ ; (7_,) (propagated by forward rules (13)). Note that both

types of constraints, Hs and Ss, are needed, the latter being "consumed" (deleted)
after query execution (so that the source will not be queried again with s(Y)). On the
other hand, Hs should persist even after executing the source access, because of po-
tential interactions with constraints that may be propagated later on.

Information sources are viewed as collections of source predicates that can be ac-
cessed via a specialized query interface. (Such information sources can be databases,
functional applications, etc.) The query planner reduces a query formulated in terms
of base predicates to a query in terms of source predicates and constraints. However,
since such a “global” query can involve source predicates from several information
sources, it will have to be to split into sub-queries that can be treated by the separate
information sources. Since each information source may have its own query proces-
sor, we need to explicitly represent the capabilities of these query processors. For
example, a specific database interface may not be able to deal with arbitrary joins,
may allow only certain types of selections and may also require certain parameters to
be inputs (i.e. known at query time). Dataflow issues such as input-output parameters
are especially important in the case of procedural applications.

Our query splitting algorithm (also implemented in CHR) incrementally selects the
source predicate constraints Ss (from the global query plan) that can be dealt with by
a given source. In doing this, it separates the constraints that can be treated internally
by the source's query processor from the ones that need to be treated externally (at the
level of the mediator). In order to minimize the answer sets of queries (which need to
be transferred to the mediator level), the source queries are made as specific as possi-
ble. This is achieved by delegating to the source's query processor as many con-
straints as possible. (Only the ones that are not treatable internally, are dealt with
externally.)

Example 1 (continued) In the following, we present the CHR encoding of Example 1 above, as
well as the functioning of the latter as an abductive constraint-based query planner. (We recall
that, for simplicity, we have used in the above Hp as a shorthand notation for the CHR con-
straint holds(p) and Gp as an abbreviation for the CHR constraint goal(p). Cp represent con-
straint predicate calls.)

Hstudent(Empl, Qual) ==> Hemployee(Empl), Hqualification(Empl, Qual), (e6-p)
sk(1,Sal,| Empl,Qual)), Hsalary(Empl, Sal), C(Sal = 1000), Hprogrammer(Empl).
Gemployee(Empl) <=> Gstudent(Empl, Qual). (e6-gl)
Gqualification(Empl, Qual) <=> Gstudent(Empl, Qual). (e6-g2)
Gsalary(Empl, Sal) <=> sk(1,Sal,[Empl,Qual)), Gstudent(Empl, Qual). (e6-23)
Gprogrammer(Empl) <=> Gstudent(Empl, Qual). (e6-g4)

(e6-p) is the forward propagation rule corresponding to the description rule (e6), while (e6-
gl)—(e6-g6) are its associated goal regression rules. (The CHR encodings for the rest of the
descriptions rules (el) — (e5) are very similar and are skipped for brevity.) Besides the above
problem-specific rules, we also use the general rules (8), (re) and (sk) (in this order, and taking
precedence over the problem-specific rules).

The query from Example 1

query(Empll,Empl2) :- G((employee(Empll), qualification(Empll,'C"), salary(Empli,Sall),
employee(Empl2), qualification(Empl2,'Prolog’), salary(Empl2,Sal2), Sall+ Sal2<3500)).

will first trigger the goal reduction rule for employee, regressing the goal Gemployee(EmplI) to
G administrative(Empll, 'C', Sall). The latter would then propagate with (e4)
Hnon_programmer(Empll)’ (among others). The next goal, Gqualification(Empll, 'C"), will
then propagate with (el) Hprogrammer(Empl1), which will produce an inconsistency with the
previously propagated Hnon_programmer(EmplI) (using (e3)). This will trigger backtracking
to the goal Gemployee(Empll), which will now be reduced to the source predicate G develop-
ment(Empll, 'C', Sall) (propagating Hprogrammer(EmplI), that is consistent with the next
goal Gqualification(Empll, 'C")). H development(Empll, 'C’, Sall) also propagates (with (e5))
C(Sall > 2000).

A similar chain of reasoning steps will be performed for the sub-goals involving Empi2,
leading to the source access development(Empl2, 'Prolog’, Sal2) and the constraint Sal2 >
2000. But unfortunately, the constraint Sall+Sal2<3500 is now violated by Sall>2000,
Sal2>2000, leading to a backtracking step in which the subgoal Gemployee(Empl2) is solved
by accessing the source student(Empl2, 'Prolog’), whose salary Sal2=1000 is consistent with
the constraint Sal/l+Sal2<3500. All the above reasoning steps belong to the query planning
phase. The resulting plan (consisting of source accesses and constraints)

development(Empll,'C",Sall), student(Empl2,'Prolog’), Sal2=1000, Sall+Sal2<3500

will be split into queries for the separate sources (development and student being assumed to
be tables in different databases). While doing this, the constraints treatable internally by the
various sources will be attached to the corresponding source queries. In the above example, the
constraint Sall+ Sal2<3500 involves variables of two separate sources and will not be directly
treatable by any of the sources. However, since Sal2=1000, it will be simplified to Sal1<2500,
which is treatable internally by the first source. Therefore, the execution of the plan above will
consist in querying the first source with development(Empll, 'C', Sall), Sall<2500 and the
second with student(Empl2, 'Prolog’).

7 To be more precise, G administrative(Empll, 'C', Sall) propagates with (8)

Hadministrative(Empll, 'C’, Sall), which in turn propagates Hnon_programmer(Empll)
(using the forward propagation rule associated to (e4)).

Note that querying the first source with the whole subplan development(Empli, 'C', Sall),
Sall<2500 (instead of eagerly querying it with development(Empli, 'C', Sall) without bother-
ing to construct plans), will typically transport much less tuples from the sources to the media-
tor (because Sall < 2500 acts as a filter!).

Planning and execution will be interleaved in a seamless manner. For example, the second
sub-query student(Empl2, 'Prolog’) might fail (at query time we might discover that the data-
base contains no students qualified in Prolog). One would then have to backtrack to the first
subgoal Gemployee(EmplI) and obtain it from student(Empli, 'C"), presumably allowing Gem-
ployee(Empl2) to be solved by using a more expensive permanent employee from develop-
ment(Empl2, 'Prolog’, Sal2).

Note that if we knew (in the source description (e6)) that students do not know 'Prolog’, we
could have obtained the correct solution without accessing the source student. This remark
shows that source descriptions are very useful for pruning the search space at planning time
(before actually querying the sources).

As far as we know, our sophisticated use of constraints for query planning and exe-
cution outperforms all existing query planning systems due to the early detection of
inconsistencies as well as due to the seamless interleaving of planning with execution.

34 Correctness and completeness

Our query answering approach is weakly correct, complete and terminates for a set of
acyclic description rules. To explain weak correctness, we need to consider the cases
in which the sources may violate the integrity constraints. (This may be due to practi-
cal difficulties in maintaining the joint consistency of several distributed information
sources, updated by different administrators.) In such a case, we do not simply report
a global inconsistency and give up answering queries. Instead, we view integrity
constraints as prescriptions on all possible query answers, rather than as constraints
on the sources themselves (the latter viewpoint being difficult to enforce in practice).

In other words, we avoid testing the joint consistency of the sources (which is
computationally very expensive anyway) and impose the integrity constraints only on
the query answers.

Definition 2. An answer to a query is weakly correct iff the associated tuples retrieved
from the sources verify the integrity constraints. (I.e. any potential violations of the
integrity constraints involve source tuples that are not used in the query answer.)

Example 4. Assuming we are dealing with the following integrity constraints on the
sources s1, s2 and s3:

Hs1(X1), Hs2(X2) ==> XI=X2.
HsI(XI), Hs3(X3) ==> XI=X3.

the query ?- sI(XI), s2(X2) may return X/=a, X2=a, which is a weakly correct an-
swer, since it verifies the first IC. But the answer X/=a, X2=Db is incorrect, since it
violates the first IC. Note that X/=a, X2=a is a weakly correct answer for the query
above, even if we have a tuple s3(c) that potentially violates the second IC. (How-
ever, this inconsistency between s/ and s3 is irrelevant from the point of view of the
given query and should not affect the answer.)

4 Concluding remarks and related work

An exhaustive comparison with other information integration systems is impossible,
due to lack of space. Briefly, while database oriented approaches to integration (such
as multi-databases and federated databases) use fixed global schemas and are appro-
priate only if the information sources and users do not change frequently, we deal
with dynamically evolving schemas (especially if the LAV modeling approach is
employed). On the other hand, more procedural intelligent information integration
approaches, like TSIMMIS [GPQ97] and even some declarative systems like MedLan
[AART97] or HERMES [Sub], use explicit query reformulation rules?, but without
the equivalent of our forward propagation rules (which allow an early discovery and
pruning of inconsistent plans before query execution). Our approach is closer to the
more declarative systems like SIMS [AKH96], Information Manifold [LRO96] and
Infomaster [DG97].

However, while the Information Manifold (IM) uses a special purpose query plan-
ning algorithm, we are using a general Constraint Handling module, which allows an
easy development of much more flexible intelligent information integration frame-
works (the descriptions are declarative, while also allowing efficient reasoning about
them). Also, the IM query planning algorithm cannot be easily extended to deal with
Global as View descriptions (in which interactions between sources are explicit)®.
Queries involving source descriptions with existential variables are also not treated
completely (see the remark in Section 5 of [DG97b]). Additionally, our use of an
optimized constraint propagation mechanism (like the one provided by CHR) may
help discover inconsistencies earlier than in IM (which checks for consistency all
possible combinations of sources from the buckets)!.

On the other hand, IM allows using a description logic (DL) in source descriptions.
Such DL descriptions can also be reformulated using our description rules. However,
we cannot guarantee complete reasoning with such descriptions (on the other hand,
full CARIN is highly intractable in the worst case). IM also doesn't allow reasoning
with integrity constraints. In order to guarantee polynomial complexity of the algo-
rithms for dealing with source capabilities, IM uses a more limited source capabilities
language than ours (however, the cases of intractability may not appear in real-world
cases).

Our approach is also similar to Infomaster (although few details are available in
the published papers [DG97,DG97b]), the main difference being that we are using
CHRs for reasoning, while Infomaster uses a model elimination theorem prover.
(Although Infomaster was not available for a more detailed comparison, we expect a
constraint based approach to be more efficient than a model elimination theorem
prover.) Due to its use of safe iff definitions for representing sources (and domain
knowledge), Infomaster employs gensym predicates for emulating unidirectional

8 Such query templates correspond to our goal regression rules.

° The interactions between sources from different "buckets" (in the terminology of [LRO96])
need to be taken into account.

19 Consistency tests in a sophisticated language like CARIN [LR98] being "lazy" (a complex
external consistency verifier for CARIN is invoked).

(necessary) source definitions (which represent the typical case, since only very rarely
do we have complete source descriptions).

COIN [BG97] also uses a CLP framework (Eclipse) for abductive reasoning and
CHRs for implementing integrity constraints. However, integrity constraints can be
imposed in COIN only on source predicates. Thus, COIN domain knowledge reduces
to Prolog reduction rules, which are used only backwards (during goal regression).
The lack of forward propagation rules involving base predicates (and not just sources)
makes the discovery of potential interactions between base predicates (and thus the
full use of domain knowledge) impossible. COIN also doesn't have a full-fledged
query planner (it doesn't aggregate sub-queries to relations of the same source,
thereby having to transport large/huge numbers of tuples from the source to the me-
diator).

CHR and its disjunctive extension CHR" [AS98] have also been used by Abden-
nadher and Christiansen [ASO0] as a platform for integrity constraints and abduction.

However, CHR" and SLPs [KTWO98] and represent more general architectures
(very much like CHRs), while we are concentrating on query planning in the frame-
work of intelligent information integration. (While the criterion for goal suspension in
SLPs is the instantiation of variables, in query planning we have a more sophisticated
criterion stopping unfolding at source predicates, aggregating them into source que-
ries and instantiating variables by executing these partial queries.) We also propose a
higher level knowledge representation formalism based on description rules and use
CHRs as a means of combining backward and forward reasoning in this formalism.

We are unaware of any I’ system based on SLPs or CHRs.

In a recent paper [GMO02], Grant and Minker present an elegant logic-based ap-
proach to data integration. However, Grant and Minker deal with the more difficult
problem of answering queries using views (which is more appropriate for a data
warehousing approach to integration), while we are more interested in what has been
recently called ‘real-time data integration’ (which is more appropriate whenever the
sources change frequently so that data warehousing is inapplicable). The state of art
on answering queries using views is reviewed in [HO1], which compares three algo-
rithms, namely the bucket algorithm [LRO96], inverse rules [DG97a] and the Mini-
Con algorithm [PLO1], showing that the MiniCon outperforms the other two.

Finally, Denecker et al. [D95] use the notion of “open predicates” as a synonym of
abducibles, or of what we call “completely open” predicates. We generalize abduci-
bles by allowing open predicates to have partial definitions.

The system presented in this paper (implemented in SICStus CHR [Sics]) is fully
operational and has been used in several real-world applications involving the inte-
gration of molecular biology and genetics resources (databases, knowledge bases and
tools), as well as corporate information systems.

Acknowledgments. This work was partially supported by the European Commission IST
project SILK (IST-1999-11135) [S]. We are grateful to our project partners IQSOFT (Hun-
gary) and EADS (France) for developing the database wrappers and the Sicstus Prolog inter-
face to them, as well as for interesting discussions on the topics presented in this paper. The
SILK toolset developed in the framework of the above-mentioned project is a more complex
environment including a mediator (presented in this paper), but also a so-called ‘integrator’
(used for model construction and evolution) [BKS02], as well as various wrappers and a devel-
oper interface.

References

[AART97] Aquilino D., Asirelli P., Renso C., Turini F., MedLan: a Logic-based Mediator
Language, IEI Technical Report B4-16, November 1997.

[ACO00] Abdennadher S., Christiansen H. An Experimental CLP Platform for Integrity Con-
straints and Abduction. Proc. FQAS-2000.

[AKH96] Y. Arens, C.A. Knoblock, Chun-Nan Hsu. Query Processing in the SIMS Informa-
tion Mediator, Advanced Planning Technology, A.Tate (ed)), AAAI Press, 1996.

[AS98] Abdennadher S., H. Schuetz. CHR": a flexible query language. Proc. FQAS-98.

[BGY7] S. Bressan and C.H. Goh. Answering queries in context. In Proceedings of the Interna-
tional Conference on Flexible Query Answering Systems, FQAS-98, Roskilde, 1998.

[BKS02] T. Benko, P. Krauth, P. Szeredi. Application Integration through Logic based Model
Evolution. Proc. ICLP-2002.

[D95] M. Denecker. A Terminological Interpretation of (Abductive) Logic Programming.
Proc. NMR-95, pp.15-29, 1995.

[DGI97b] O.M. Duschka and Michael R. Genesereth. Query Planning in Infomaster, Proc.12th
Annual ACM Symposium on Applied Computing, SAC '97, San Jose, February 1997.

[DG97a] O.M. Duschka, M. Genesereth. Answering recursive queries using views. PODS-97.

[DG97] O.M. Duschka, M.R. Genesereth. Infomaster - An Information Integration Tool. Tool.
Proc. International Workshop "Intelligent Information Integration", KI-97, Freiburg, 1997.

[Fr98] Fruewirth T. Theory and Practice of Constraint Handling Rules, JLP 37:95-138, 1998.

[GMO2] J. Grant, J. Minker. A logic-based approach to data integration. TPLP 2002.

[GPQ97] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J.
Ullman, V. Vassalos, J. Widom. The TSIMMIS approach to mediation: Data models and
Languages. In Journal of Intelligent Information Systems, 1997.

[HO1] Alon Halevy. Answering queries using views: a survey. VLDB Journal 2001.

[KKT98] Kakas A., Kowalski R., Toni F. The role of abduction in logic programming,
Handbook of logic in Al and LP 5, OUP 1998, 235-324.

[KTWO98] Kowalski R., Toni F., Wetzel G. Executing suspended logic programs, Fundamenta
Informaticae 34 (1998), 1-22.

[KTWO98] R. Kowalski, F. Toni, and G. Wetzel. Executing suspended logic programs.
Fundamenta Informaticae, 34(3):203-224, 1998.

[Lev0O] Alon Y. Levy , Logic-Based Techniques, in Data Integration Logic Based Artificial
Intelligence, Jack Minker (ed). Kluwer, 2000.

[LRO96] Alon Y. Levy, A. Rajaraman, J.J. Ordille, Querying Heterogeneous Information
Sources Using Source. Proc. 22nd VLDB Conference, Bombay, India. 1996.

[PLO1] Rachel Pottinger , Alon Y. Halevy , Minicon: A Scalable Algorithm for Answering
Queries Using Views VLDB Journal 2001.

[Sics] SICS. SICStus Prolog Manual, April 2001.

[Sub] V.S. Subrahmanian et al. HERMES: A heterogeneous reasoning and mediator system.
http://www.cs.umd.edu/projects/hermes/overview/paper.

[S] The SILK project (IST-11135). http://www.silk-project.com/

[Wie92] Wiederhold G. Mediators in the architecture of future information systems, IEEE
Comp. 25(3) 1992, 38-49.

[WT98] G. Wetzel and F. Toni. Semantic query optimization through abduction and constraint
handling. Proc. FQAS-98 Flexible Query Answering Systems, LNAI 1495:366-381, 1998.

[WO97] Wetzel G. Using integrity constraints as deletion rules, Proc. DYNAMICS'97, 147-161.

