
badea@ici.ro

s1(Empl,Department,…) ∧ s2(Empl,Project,…) → proj_dept(Project, Department). (1)

… →
… →

∧ →

→ …
…

…

←

∨

∆
〈 〉 ∆ ⊆ M(∆) ∪∆

∆ |=



≠

∨

←
← ← ∗

∗
←

∧ →

Example 1. Assume that in a software company we want to allocate qualified personnel to a
new project while not exceeding a given budget. Assume that the company's information sys-
tem contains separate databases for each department (in our case administrative and develop-
ment, which are regarded as source predicates), as well as a database of students (part-time
employees) who could be employed in the project, in case the overall project budget is ex-
ceeded by using full-time personnel (students are assumed to have a lower salary).

The end user of the integrated system (for example the company's manager) would use base
predicates such as: employee(Employee), qualification(Employee, Qualification), sal-
ary(Employee, Salary). The following description rules are used to represent domain-specific
knowledge (descriptions for base predicates):

→ (e1)
qualification(Empl, 'Prolog') → programmer(Empl) (e2)

→ ≠ (e3)
The following description rules are used to characterize the source predicates:
administrative(Empl, Qual, Sal) → employee(Empl), qualification(Empl, Qual),

 salary(Empl, Sal), non_programmer(Empl). (e4)

development(Empl, Qual, Sal) → employee(Empl), qualification(Empl, Qual),
 salary(Empl, Sal), Sal > 2000, programmer(Empl). (e5)

student(Empl, Qual) → employee(Empl), qualification(Empl, Qual),
(e6)

The above description rules assert that:
• people with qualifications in C and Prolog are programmers, while programmers and non-

programmers are disjoint concepts.
• administrative employees are non-programmers
• employees from the development department are programmers (with a salary over 2000)
• students are also programmers and are assumed to have a fixed salary of 1000.

The user might want to allocate two employees Empl1 and Empl2 with qualifications 'C' and
'Prolog' such that the sum of their salaries does not exceed 3500 (see continuation of the Ex-
ample in Section 3.3).

s(Name, Salary) → employee(Name) ∧ salary(Name, Salary) ∧ Salary<1000.

∧∧∧∧∧∃→∧∀)()()(.)(. 1111 jjii YcYsYbZXpX (9)

XYZYYXX
j

j
i

i −=== ,,

Example 2. A source of cheap cars may not contain the actual prices of the cars, but we may
possess the (meta-level) knowledge that these prices are below 10000:

s(Model) → ∃P. car(Model) ∧ price(Model, P) ∧ P<10000.

Example 3. Prices of cars may be stored in a different currency, for which a source s_exchange
(functioning as a conversion table) is available:

s(Model, Price) → ∃P. car(Model) ∧ s_exchange(Price, P) ∧ price(Model, P).

•

•

→ ∧ ∧ …

→ ∧ → ∧ …

∧∧∧∧∧→∧∀)()()(),,()(. 1111 jjiik YcYsYbXZkskXpX (10)

←
≠

),,(XZksk k

)(XfZ kk =

).(),,()(. 11 llk YbXZkskXpX ∧∧∧→∧∀ (11)

lk YZ ∈

),(,),,,(,)(11 XpXZkskYb kll GG <=> (12)

3.2.2 Propagation rules

),(,),(,),(,),,,(,)(1111 jjiik YcYsYbXZkskXp CGHH ==>∧ (13)

)(ii Ys

)(ii Ys

S
S

)(ii YsS
)(jj YcC

S

S

Example 1 (continued) In the following, we present the CHR encoding of Example 1 above, as
well as the functioning of the latter as an abductive constraint-based query planner. (We recall
that, for simplicity, we have used in the above Hp as a shorthand notation for the CHR con-
straint holds(p) and Gp as an abbreviation for the CHR constraint goal(p). Cp represent con-
straint predicate calls.)

Hstudent(Empl, Qual) ==> Hemployee(Empl), Hqualification(Empl, Qual), (e6-p)
 sk(1,Sal,[Empl,Qual]), Hsalary(Empl, Sal), C(Sal = 1000), Hprogrammer(Empl).

Gemployee(Empl) <=> Gstudent(Empl, Qual). (e6-g1)
Gqualification(Empl, Qual) <=> Gstudent(Empl, Qual). (e6-g2)
Gsalary(Empl, Sal) <=> sk(1,Sal,[Empl,Qual]), Gstudent(Empl, Qual). (e6-g3)
Gprogrammer(Empl) <=> Gstudent(Empl, Qual). (e6-g4)

(e6-p) is the forward propagation rule corresponding to the description rule (e6), while (e6-
g1)−(e6-g6) are its associated goal regression rules. (The CHR encodings for the rest of the
descriptions rules (e1) – (e5) are very similar and are skipped for brevity.) Besides the above
problem-specific rules, we also use the general rules (8), (re) and (sk) (in this order, and taking
precedence over the problem-specific rules).

The query from Example 1
query(Empl1,Empl2) :- G((employee(Empl1), qualification(Empl1,'C'), salary(Empl1,Sal1),
 employee(Empl2), qualification(Empl2,'Prolog'), salary(Empl2,Sal2), Sal1+ Sal2<3500)).
will first trigger the goal reduction rule for employee, regressing the goal Gemployee(Empl1) to
G administrative(Empl1, 'C', Sal1). The latter would then propagate with (e4)
Hnon_programmer(Empl1)7 (among others). The next goal, Gqualification(Empl1, 'C'), will
then propagate with (e1) Hprogrammer(Empl1), which will produce an inconsistency with the
previously propagated Hnon_programmer(Empl1) (using (e3)). This will trigger backtracking
to the goal Gemployee(Empl1), which will now be reduced to the source predicate G develop-
ment(Empl1, 'C', Sal1) (propagating Hprogrammer(Empl1), that is consistent with the next
goal Gqualification(Empl1, 'C')). H development(Empl1, 'C', Sal1) also propagates (with (e5))
C(Sal1 > 2000).

A similar chain of reasoning steps will be performed for the sub-goals involving Empl2,
leading to the source access development(Empl2, 'Prolog', Sal2) and the constraint Sal2 >
2000. But unfortunately, the constraint Sal1+Sal2<3500 is now violated by Sal1>2000,
Sal2>2000, leading to a backtracking step in which the subgoal Gemployee(Empl2) is solved
by accessing the source student(Empl2, 'Prolog'), whose salary Sal2=1000 is consistent with
the constraint Sal1+Sal2<3500. All the above reasoning steps belong to the query planning
phase. The resulting plan (consisting of source accesses and constraints)

will be split into queries for the separate sources (development and student being assumed to
be tables in different databases). While doing this, the constraints treatable internally by the
various sources will be attached to the corresponding source queries. In the above example, the
constraint Sal1+ Sal2<3500 involves variables of two separate sources and will not be directly
treatable by any of the sources. However, since Sal2=1000, it will be simplified to Sal1<2500,
which is treatable internally by the first source. Therefore, the execution of the plan above will
consist in querying the first source with development(Empl1, 'C', Sal1), Sal1<2500 and the
second with student(Empl2, 'Prolog').

Note that querying the first source with the whole subplan development(Empl1, 'C', Sal1),
Sal1<2500 (instead of eagerly querying it with development(Empl1, 'C', Sal1) without bother-
ing to construct plans), will typically transport much less tuples from the sources to the media-
tor (because Sal1 < 2500 acts as a filter!).

Planning and execution will be interleaved in a seamless manner. For example, the second
sub-query student(Empl2, 'Prolog') might fail (at query time we might discover that the data-
base contains no students qualified in Prolog). One would then have to backtrack to the first
subgoal Gemployee(Empl1) and obtain it from student(Empl1, 'C'), presumably allowing Gem-
ployee(Empl2) to be solved by using a more expensive permanent employee from develop-
ment(Empl2, 'Prolog', Sal2).

Note that if we knew (in the source description (e6)) that students do not know 'Prolog', we
could have obtained the correct solution without accessing the source student. This remark
shows that source descriptions are very useful for pruning the search space at planning time
(before actually querying the sources).

As far as we know, our sophisticated use of constraints for query planning and exe-
cution outperforms all existing query planning systems due to the early detection of
inconsistencies as well as due to the seamless interleaving of planning with execution.

Definition 2. An answer to a query is weakly correct iff the associated tuples retrieved
from the sources verify the integrity constraints. (I.e. any potential violations of the
integrity constraints involve source tuples that are not used in the query answer.)
Example 4. Assuming we are dealing with the following integrity constraints on the
sources s1, s2 and s3:

Hs1(X1), Hs2(X2) ==> X1=X2.
Hs1(X1), Hs3(X3) ==> X1=X3.

V

V

V

SICS. SICStus Prolog Manual, April 2001.

