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Abstract. Although very widely used in unsupervised data mining, most 
clustering methods are affected by the instability of the resulting clusters w.r.t. 
the initialization of the algorithm (as e.g. in k-means). Here we show that this 
problem can be elegantly and efficiently tackled by meta-clustering the clusters 
produced in several different runs of the algorithm, especially if “soft” 
clustering algorithms (such as Nonnegative Matrix Factorization) are used both 
at the object- and the meta-level. The essential difference w.r.t. other meta-
clustering approaches consists in the fact that our algorithm detects frequently 
occurring sub-clusters (rather than complete clusters) in the various runs, which 
allows it to outperform existing algorithms. Additionally, we show how to 
perform two-way meta-clustering, i.e. take both object and sample dimensions 
of clusters simultaneously into account, a feature which is essential e.g. for 
biclustering gene expression data, but has not been considered before. 

1   Introduction and Motivation 

Clustering is one of the most widely used unsupervised learning methods and the 
number of different clustering approaches is overwhelming. However, despite 
their wide variety, most clustering methods are affected by a common problem: 
the instability of the resulting clusters w.r.t. the initialization of the algorithm (as 
in the case of k-means) and w.r.t. slight differences in the input dataset as a result 
of resampling the initial data (e.g. in the case of hierarchical clustering). This is 
not surprising if we adopt a unifying view of clustering as a constrained 
optimization problem, since the fitness landscape of such a complex problem may 
involve many different local minima into which the algorithm may get caught 
when started off from different initial states. 

Although such an instability seems hard to avoid, we may be interested in the 
clusters that keep reappearing in the majority of the runs of the algorithm. This is 
related to the problem of combining multiple clustering systems, which is the 
unsupervised analog of the classifier combination problem [8], a comparatively 
simpler problem that has attracted a lot of research in the past decade. Combining 
clustering results is more complicated than combining classifiers, as it involves 
solving an additional so-called cluster correspondence problem, which amounts 
to finding the best matches between clusters generated in different runs. 
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The cluster correspondence problem can also be cast as an unsupervised 
optimization problem, which can be solved by a (meta-) clustering algorithm. 
Choosing an appropriate meta-clustering algorithm for dealing with this problem 
crucially depends on the precise notion of cluster correspondence.  

A very strict notion of one-to-one correspondence between the clusters of each 
pair of clustering runs may be too tough to be realized in most practical cases. For 
example, due to the above-mentioned instability, different runs of k-means 
clustering with different initializations may easily produce different sets of 
clusters, e.g. run1 = {{1,2,3},{4,5}}, run2 = {{1,2}, {3,4,5}}, …. 

A more lenient notion of cluster correspondence would look for clusters that 
keep reappearing in all runs (while ignoring the rest), but only very few (if any) 
such clusters may exist for a large enough number of runs.  

An even less restrictive notion could be envisioned by looking for clusters that 
are most similar (although not necessarily identical) across all runs. This is 
closest to performing something like single-linkage hierarchical clustering on the 
sets of clusters produced in the various clustering runs, with the additional 
constraint of allowing in each meta-cluster no more than a single cluster from 
each individual run. Unfortunately, this constraint will render the meta-clustering 
algorithm highly unstable. Thus, while trying to address the instability of (object-
level) clustering using meta-level clustering, we end up with instability in the 
meta-clustering algorithm itself. Therefore, a “softer” notion of cluster 
correspondence is needed. 

The main motivation for this work comes from genomics, more precisely from 
clustering gene expression data [2]. (Therefore, in the following we will frequently refer 
to clusters of genes rather than clusters of more abstract objects.) Most currently used 
clustering algorithms produce non-overlapping clusters, which represents a serious 
limitation in this domain, since a gene is typically involved in several biological 
processes. Here we adopt a biologically plausible simplifying assumption that the 
overlap of influences (biological processes) is additive 

               ∑=
csg cgsXX )|,(     (1) 

where Xsg is the expression level of gene g in data sample s, while X(s,g ⎢c) is the 
expression level of g in s due to biological process c. We also assume that  
X(s,g ⎢c) is multiplicatively decomposable into the expression level Asc of the 
biological process (cluster) c in sample s and the membership degree Scg of gene g 
in c:  

cgsc SAcgsX ⋅=)|,(            (2) 

2   Nonnegative Matrix Factorization as a Soft Clustering Method 

Combining (1) and (2) leads to the reformulation of our clustering problem as a 
Nonnegative Matrix Factorization (of the ns × ng matrix X as a product of an  
ns × nc matrix A and an nc × ng matrix S): 

                                              ∑ ⋅≈
c cgscsg SAX                                               (3) 
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with the additional nonnegativity constraints:   Asc ≥ 0,  Scg ≥ 0        (4) 
(Expression levels and membership degrees cannot be negative.) 

Such a problem can be cast as a constrained optimization problem: 

minimize ( )∑ ⋅−=⋅−=
gs

sgF SAXSAXSAC
,

22

2

1
||||

2

1
),(              (5) 

subject to the nonnegativity constraints (4), and could be solved using Lee and 
Seung’s Nonnegative Matrix Factorization (NMF) algorithm [4,5]. 

As explained above, such a factorization can be viewed as a “soft” clustering 
algorithm allowing for overlapping clusters, since we may have several 
significant Scg entries on a given column g of S (so a gene g may “belong” to 
several clusters c).  

Allowing for cluster overlap alleviates but does not completely eliminate the 
instability of clustering, since the optimization problem (5), (4) is non-convex. 

In particular, the NMF algorithm produces different factorizations (biclusters) 
(A(i),S(i)) for different initializations and meta-clustering the resulting “soft” 
clusters S(i) could be used to obtain a more stable set of clusters. 

However, using a “hard” meta-clustering algorithm would once again entail an 
unwanted instability. Therefore, we propose using Nonnegative Matrix 
Factorization as a “soft” meta-clustering approach.  

This not only alleviates the instability of a “hard” meta-clustering algorithm, 
but also produces a “base” set of “cluster prototypes”, out of which all clusters of 
all individual runs can be recomposed, despite the fact that they may not 
correspond to identically reoccurring clusters in all individual runs (see Figure 1). 

 

Fig. 1. Clusters obtained in different runs are typically combinations of a “base” set of “cluster 
prototypes” (rather than identical across all runs) 

3   Metaclustering with NMF 

We propose using NMF both for object-level clustering and meta-clustering. This 
unified approach solves in an elegant manner both the clustering and the cluster 
correspondence problem. More precisely, we first run NMF as object-level 
clustering r times: 

                                  riSAX ii ,...,1)()( =⋅≈          (6) 

where X is the data matrix to be factorized (samples × objects to be factorized), 
A(i) (samples × clusters) and S(i) (clusters × objects). 
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To allow the comparison of membership degrees Scg for different clusters c, we 
scale the rows of S(i) to unit norm by taking advantage of the scaling invariance of 
the above factorization (6). More precisely: 

Proposition. The NMF objective function (5) is invariant under the 
transformation A ← A ⋅ D, S ← D−1⋅ S, where D = diag(d1,…,dnc) is a positive 
diagonal matrix. 

Since a diagonal matrix D operates on the rows of S and on the columns of A, 
we can scale the rows of S to unit norm by using a diagonal scaling 

with ∑=
g cgc Sd 2 . 

Next, we build a global S-matrix of size r⋅ nc × ng: 

                                               

⎟
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S          (7) 

by collecting all clusters (i.e. rows of S(i)) from all runs and then use NMF once 
more to meta-cluster these clusters (i.e. the rows of SG): 

                                                        γα ⋅≈GS                          (8) 

where α and γ are of sizes r⋅ nc × nc and nc × ng respectively. Note that whereas 
object level NMF clusters columns of X (e.g. genes in our genomics application), 
meta-clustering clusters rows of SG.  

Note that α encodes the cluster – metacluster correspondence. On the other 
hand, the rows of γ make up a base set of cluster prototypes, out of which all 
clusters of all individual runs can be recomposed: 

                                                ∑ ⋅= −+m mmnic
i

c c
S γα ,)1(

)(          (9) 

where )( i
cS is the row c of S(i), while γm is the row m of γ. 

Using the notation )(i
cmα  for mnic c ,)1( −+α , we can rewrite (9) as 

                                                  ∑ ⋅=
m m

i
cm

i
cS γα )()(             (9') 

Ideally (in case of a perfect one-to-one correspondence of clusters across runs), 

we would expect the rows of α to contain a single significant entry )(
),(,

i
cimcα , so 

that each cluster )( i
cS corresponds to a single cluster prototype ),( cimγ  (where 

m(i,c) is a function of i and c ): ),(
)(

),(,
)(

cim
i

cimc
i

cS γα ⋅=             (10) 

Additionally, each meta-cluster m should contain no more than a single cluster 

from each individual run, i.e. there should be no significant entries )(
'
i
mcα and )(

"
i
mcα  

with c '≠ c". Although it could be easily solved by a hard meta-clustering 
algorithm, such an ideal cluster correspondence is only very seldom encountered 
in practice, mainly due to the instability of most clustering algorithms. 
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Thus, instead of such a perfect correspondence (10), we settle for a weaker one (9) 
in which the rows of α can contain several significant entries, so that all clusters 
(rows of SG) are recovered as combinations of cluster prototypes (rows of γ ). 

The nonnegativity constraints of NMF meta-clustering are essential both for 
allowing the interpretation of γ as cluster prototypes as well as for obtaining 
sparse factorizations (α,γ ). (Experimentally, the rows of α tend to contain 
typically one or only very few significant entries.)  

In order to make the prototype clusters (rows of γ ) directly comparable to the 
clusters (rows) from SG, we use the diagonal scaling 

γγαα ⋅←⋅← − DD ,1    with  ⎟
⎠
⎞

⎜
⎝
⎛= ∑ j jmr

diagD α1 . 

The cluster prototypes matrix γ produced by meta-clustering (8) is subsequently 
used as seed for a final NMF run aiming at producing the final factorization. 
More precisely, the seed for the final NMF run is (A0,γ ), where A0 is the 
nonnegative least squares solution to γ⋅≈ 0AX . 

We thus obtain a final factorization (3), which can be interpreted as a stable 
clustering of X allowing for overlapping clusters. The algorithm is summarized 
below. 

Clustering with Metaclustering (X) → (A, S) 

for i = 1,…,r 
run NMF(X,A(0i),S(0i)) with random initial matrices A(0i),S(0i) to produce a 
factorization with nc clusters: )()( ii SAX ⋅≈  
scale the rows of S(i) to unit norm:  

)(1)()()( , iiii SDSDAA ⋅←⋅← − with ( )∑=
g cgSdiagD 2   

end 

Construct 
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r
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S

S

S  and use NMF(SG,α(0),γ(0)) (with random α(0),γ(0)) to 

produce a factorization (“meta-clustering”) with internal dimensionality nc: 

γα ⋅≈GS  

scale the columns of α:  γγαα ⋅←⋅← − DD ,1    with  ( )rdiagD
j jm /∑= α  

Let A0 be the nonnegative least squares solution to γ⋅≈ 0AX  

Run NMF(X,A0,γ ) to produce the final factorization SAX ⋅≈  

NMF(X, A0, S0) → (A,S) 
A ← A0,  S ← S0 

loop 
cg

T

cg
T

cgcg SAA

XA
SS

)(

)(

⋅⋅
⋅

←  
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sc
T

sc
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scsc SSA

SX
AA

)(

)(

⋅⋅
⋅←  

until convergence. 

4   Sparser Decompositions 

Although NMF tends to produce sparse factorizations that are quite immune to 
moderate levels of noise [4], even sparser decompositions may be desired to cope 
with higher noise levels. An ad-hoc approach to obtaining such sparser 
factorizations would fix to zero all the elements below a given threshold of an 
NMF factorization and then apply several re-optimization rounds until a fixpoint 
is attained. Hoyer's Nonnegative Sparse Coding (NNSC) algorithm [3] is a more 
elegant approach that factorizes X≈A⋅S by optimizing an objective function that 
combines the fit of the factorization to the original data with a size term 
penalizing the non-zero entries of S: 

minimize      ∑+−=
gc

cgF
SASXSAC

,

2

2
1

),( λ                                   (11) 

subject to the nonnegativity constraints Asc ≥ 0,  Scg ≥ 0. 
(NMF is recovered by setting the size parameter λ to zero, while a non-zero λ 
would lead to sparser factorizations.) Unfortunately however, the scaling 

invariance of the fitness term 2

2

1
F

ASX −  makes the size term ineffective, since 

the latter can be forced as small as needed by using a diagonal scaling D with 
small enough entries. Additional constraints are therefore needed to render the 
size term operational. Since a diagonal matrix D operates on the rows of S and on 
the columns of A, we could impose unit norms either for the rows of S, or for the 
columns of A. 

Unfortunately, the objective function (11) used in [3] produces decompositions 
that depend on the scale of the original matrix X (i.e. the decompositions of X and 
ηX are essentially different), regardless of the normalization scheme employed. 
For example, if we constrain the rows of S to unit norm, then we cannot have 
decompositions of the form X ≈ A⋅S and ηX ≈ ηA⋅S, since at least one of these is 
in general non-optimal due to the dimensional inhomogeneity of the objective 

function w.r.t. A and X: .
2

1
),(

,

22 ∑+−=
gc cgFX SASXSAC ληηη

 On the other 

hand, if we constrain the columns of A to unit norm, the decompositions X ≈ A⋅S 
and ηX ≈ A⋅ηS cannot be both optimal, again due to the dimensional 
inhomogeneity of C, now w.r.t. S and 

X: .
2
1

),(
,

22 ∑+−=
gc cgFX SASXSAC ηληηη

 

Therefore, as long as the size term depends only on S, we are forced to 
constrain the columns of A to unit norm, while employing an objective function 
that is dimensionally homogeneous in S and X. One such dimensionally 
homogeneous objective function is: 
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                              22

2
1
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FF

SASXSAC λ+−=                             (12) 

which will be minimized subject to the nonnegativity constraints and the 
constraints on the norm of the columns of A:  1=cA   (i.e. 12 =∑ s scA ). 

It can be easily verified that this produces scale independent decompositions, 
i.e. if X ≈ A⋅S is an optimal decomposition of X, then ηX ≈ A⋅ηS is an optimal 
decomposition of ηX. 

The constrained optimization problem could be solved with a gradient-based 
method. However, in the case of NMF, faster so-called “multiplicative update 
rules” exist [5,3], which we have modified for the NNSC problem as follows. 

Modified NNSC algorithm 
Start with random initial matrices A and S  

loop 
cg

T

cg
T

cgcg SSAA

XA
SS

)(

)(

λ+⋅⋅
⋅

←   

 TSSAXAA ⋅⋅−+← )(µ  

 normalize the columns of A to unit norm: 1−⋅← DAA , ( )∑=
s scAdiagD 2  

until convergence. 

Note that we factorize X rather than XT since the sparsity constraint should 
affect the clusters of genes (i.e. S) rather than the clusters of samples A. (This is 
unlike NMF, for which the factorizations of X and XT are symmetrical.)  

4.1   Sparser Factorizations and Noise 

To demonstrate that sparser factorizations are better at coping with noise than 
simple NMF, we generated a synthetic dataset with highly overlapping clusters 
and very large additive noise (the standard deviation of the noise was 0.75 of the 
standard deviation of the original data). 

We ran our modified NNSC algorithm with increasingly larger λ (ranging from 
0 to 0.75) and observed that the gene clusters were recovered almost perfectly 
despite the very large noise, especially for small values of λ. 

Figure 2 shows the original data without and with noise respectively (upper 
row), as well as the reconstructed data (A⋅S) for λ=0.05 and λ=0.75 (lower row). 
Note that the reconstructed data is closer to the original noise-free data than to the 
noisy original. The following Table shows the relative error computed w.r.t. the 
noisy data Xnoisy (i.e.

FnoisyFnoisynoisy XASX −=ε ) as well as the relative error w.r.t. 

the original data Xorig (before adding noise, i.e.
ForigForigorig XASX −=ε ) for 

several values of λ ranging from 0 to 0.75.  

λ 0 0.02 0.05 0.1 0.2 0.4 0.5 0.75 
εnoisy 0.2001 0.2017 0.2053 0.2161 0.2295 0.2452 0.2983 0.3228 
εorig 0.1403 0.1375 0.1364 0.1419 0.1544 0.1719 0.2323 0.2604 
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Fig. 2. A synthetic dataset 

Note that εorig is always lower than εnoisy. Also, whereas εnoisy increases as 
expected with λ, εorig attains a minimum at λ=0.05 showing that small values of λ 
tend to improve not only the clusters, but also the error w.r.t. the original data. 

5   Two-Way Meta-clustering 

The meta-clustering approach based on (8) takes only the gene clusters (rows of 
S(i)) into account. Although this works very well in many cases, it will fail 
whenever two clusters correspond to very similar sets of genes, while differing 
along the sample dimension. For example, clusters 1 and 2 from Figure 2 are 
quite similar along the gene dimension, so a meta-clustering method looking just 
at genes would be incapable of discriminating between the two clusters, unless it 
also looks at the “sample clusters” A(i). In the following, we show that a slight 
generalization of NMF, namely Positive Tensor Factorization (PTF) [6] can be 
successfully used to perform two-way meta-clustering, which takes both the gene 
and the sample dimensions into account. (As far as we know, this elegant view of 
metaclustering as a PTF problem has not been considered before.) 

Naively, one would be tempted to try clustering the biclusters1 )()( i
c

i
c SA ⋅ instead 

of the gene clusters )(i
cS , but this is practically infeasible in most real-life datasets 

because it involves factorizing a matrix of size r⋅ nc × ns⋅ ng. On closer inspection, 

                                                           
1 )(i

cA is the column c of A(i), while )(i
cS is the row c of S(i). 

4

3 

1

2
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however, it turns out that it is not necessary to construct this full-blown matrix – 
actually we are searching for a Positive Tensor Factorization of this matrix 2 

                                       ∑ =
⋅⋅≈⋅ cn

k kgsk
i

ck
i

cg
i

sc SA
1

)()()( γβα                    (14) 

The indices in (14) have the following domains: s – samples, g – genes, c – 
clusters, k – metaclusters. To simplify the notation, we could merge the indices i 
and c into a single index (ic), so that the factorization becomes: 

∑ =
⋅⋅≈⋅ cn

k kgskkicgicics SA
1 )()()( γβα     (14’) 

Note that β and γ are the “unified” versions of A(i) and S(i) respectively, while α 
encodes the cluster-metacluster correspondence. 

The factorization (14’) can be computed using the following multiplicative 
update rules (the proofs are straightforward generalizations of those for NMF and 
can also be found e.g. in [6]): 

)]()[(

)()(
TT

TT SA

γγββα
γβαα
⋅∗⋅⋅

⋅∗⋅∗←  

)]()[(

)]([
TT

TSA

γγααβ
γαββ

⋅∗⋅⋅
⋅∗⋅∗←                   (15) 

γββαα
βαγγ

⋅⋅∗⋅
⋅⋅∗∗←

TTT

TT SA

)]()[(

)]([  

where ‘∗’ and ‘−−’ denote element-wise multiplication and division of matrices, 
while ‘⋅’ is ordinary matrix multiplication.  

The PTF factorization (14’) should be contrasted with our previous 
metaclustering approach (8) based on NMF: 

∑ =
⋅≈ cn

k kg
i

ck
i

cgS
1

)()( γα            (8’) 

It can be easily seen that whereas (14) groups biclusters by taking both the gene 
and the sample dimension into account, (8’) may confuse two biclusters that have 
similar gene components (even if they have different sample supports). For 
example, (8’) confuses biclusters 1 and 2 from Figure 2, while (14) is able to 
perfectly discriminate between the two despite the noise and the difference in 
intensity between the two biclusters. 

After convergence of the PTF update rule, we normalize the rows of γ to unit 
norm (||γk|| = 1), as well as the columns of α such that ∑ =

ci

i
ck r

,

)(α  (r being the 

number of runs): 3 

                                                           
2  More precisely, we are dealing with the constrained optimization problem 

2

,,, 1

)()()(

2

1
),,(min ∑ ∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

=gsci

n

k
kgsk

i
ck

i
cg

i
sc

c

SAC γβαγβα subject to α,β,γ ≥ 0. 

3  In order to be able to interpret β and γ as “unified” A(i) and S(i) respectively, we need to have 

∑ ≈
c

i
ck 1)(α , i.e. ∑ ≈

ci

i
ck r

,

)(α , since ( )∑ ∑∑ =
⋅⋅≈⋅≈ cn

k kgskc

i
ckc

i
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i
sc SAX

1

)()()( .γβα   
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∑
 

∑ ⋅⋅
ci skkic

k
sk r , )(

|||| βαγβ  

and then run NMF initialized with (β,γ ) to produce the final factorization X ≈ A⋅S. 

6   Experimental Evaluation 

We evaluated our algorithm on synthetic datasets4 generated by continuous latent 
variable graphical models as in Figure 3. (The clusters corresponding to the latent 
variables Lk overlap in the variables Xi influenced by several Lk.) To generate 
nonnegative biclusters as in Figure 2, we set Lk to nonzero values (drawn from the 
absolute of a normal distribution) only in certain subsets of samples. The 
observable variables Xi were affected by additive normal noise with a standard 
deviation )()( )0(

ii Xσνεσ ⋅=  equal to a fraction ν of the standard deviation of the 

noise-free “signal” Xi
(0). (It can be easily seen that this model is equivalent to X = 

A(0)⋅S(0) + ε, where X = (X1 … Xng) and S(0)
kj

 are the coefficients associated to the 
Lk → Xj edges.) 

 
Fig. 3. Latent variable model for overlapping clusters 

The Table below presents a comparison of various combinations of clustering 
and meta-clustering algorithms – columns of the Table correspond to clustering 
algorithms (k-means, fuzzy k-means [7] and NMF), while the rows are associated 
to meta-clustering algorithms (k-means, fuzzy k-means, NMF and PTF) with or 
without a final NMF step, as well as to the best individual clustering run 
(resampling). The figures in the Table represent average matches of the 
reconstructed clusters with the original ones, together with the associated relative 
errors (we display both averages and standard deviations for 10 runs of each 
metaclustering method with different input data X).  

                                                           
4  The small dataset from Figure 2 with 21 samples and 35 genes allows a human analysis of the 

results. 

X1 Xi Xj Xk Xng … … … 

L1 L2 Lm … 
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Defining the match between two sets of possibly overlapping clusters is 
nontrivial. For each cluster C1 from clustering 1, we determine the single cluster 
C2 from clustering 2 into which it is best included, i.e. the one with the largest 

|||| 121 CCC ∩ . We proceed analogously for the clusters C2 from clustering 2. 
Then, for each cluster C1 (from clustering 1), we determine its match 

|||| 2121 CCCC ∪∩  with the union C2 of clusters from clustering 2, for which C1 is 
the best including cluster (as determined in the previous step). Similarly, we 
determine matches for clusters C2 from clustering 2. The average match of the 
two clusterings is then the mean of all these matches (for all C1 and all C2).  

The Table clearly demonstrates the necessity of using nonnegative decompositions 
like NMF (either as individual runs or as the final step) for obtaining reasonable 
results. Indeed, the best match without any nonnegative decompositions is 55% and 
the lowest relative error 0.2, whereas with nonnegative decompositions, we obtain a 
nearly perfect match (98%) with a relative error of 10-3.  

match (std match) 
relative error (std error) 

     Kmeans      fcm      NMF 

kmeans(meta) 
0.53 (0.021) 
0.306 (0.032) 

0.55 (0.058)  
0.2 (0.018) 

0.81 (0.123)  
0.052 (0.033) 

kmeans(meta) + NMF(final) 
0.62 (0.056)  
0.153 (0.059) 

0.63 (0.181)  
0.094 (0.046) 

0.9 (0.148)  
0.002 (0.001) 

fcm(meta) 
0.51 (0.041)  
0.315 (0.054) 

0.53 (0.011)  
0.202 (0.019) 

0.92 (0.126)  
0.014 (0.004) 

fcm(meta) + NMF(final) 
0.65 (0.178)  
0.092 (0.044) 

0.56 (0.024)  
0.112 (0.008) 

0.92 (0.126)  
0.002 (0) 

NMF(meta) 
0.5 (0.032)  
0.313 (0.042) 

0.53 (0.009)  
0.194 (0.018) 

0.69 (0.008)  
0.027 (0.043) 

NMF(meta) + NMF(final) 
0.59 (0.049) 
0.132 (0.016) 

0.55 (0.008)  
0.119 (0.012) 

0.74 (0.111)  
0.012 (0.025) 

PTF(meta) 
0.49 (0.044)  
0.287 (0.023) 

0.53 (0.01)  
0.212 (0.019) 

0.98 (0.037)  
0.023 (0.006) 

PTF(meta) + NMF(final) 
0.58 (0.04)  
0.122 (0.015) 

0.55 (0.011)  
0.116 (0.014) 

0.98 (0.043)  
0.001 (0) 

Best clustering run  
(out of 10) 

0.49 (0.017)  
0.307 (0.011) 

0.53 (0.008)  
0.208 (0.018) 

0.76 (0.089)  
0.001 (0) 

Note that clustering runs based on NMF are far superior to other methods. On 
the other hand, all tested meta-clustering algorithms perform reasonably well 
(with PTF faring best), especially in terms of relative error. However, as already 
discussed in Section 5, meta-clustering with NMF does not recover the clusters 
very well (average matches are around 74% versus virtually perfect matches for 
PTF (98%), 92% for fuzzy k-means and about 90% for k-means+NMF). NMF and 
PTF on NMF runs are also quite stable (the std of the match is 0.8% and 4%  
respectively). 

Also note that although meta-clustering does not always outperform the best 
individual run in terms of relative error, it does outperform it in terms of the 
match with the original clusters (98% versus 76%). 

We also considered larger problems in which the overlapping clusters can be 
discriminated by looking at the gene dimension only. As expected, in such cases 
the best results are obtained by a combination which uses NMF for meta-
clustering: (NMF, NMF, NMF).  
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We also observed that k-means and fuzzy k-means are far inferior to NMF (as 
meta-clustering algorithms) in problems with a larger number of clusters. This is 
because, as the number of clusters increases, the fraction of perfectly reconstructed 
clusters in a limited number of runs decreases sharply. This makes meta-clustering 
algorithms like k-means or fuzzy k-means less effective, since these algorithms search 
for clusters that reoccur in a large fraction of runs. On the other hand, our approach 
using nonnegative decompositions looks for cluster prototypes out of which the 
clusters of all individual runs can be recomposed (recall Fig. 1) and therefore may 
behave well even with a limited number of runs (such as 10-20 in our experiments). 

7   Related Work and Conclusions 

Bradley and Fayyad [1] use k-means for meta-clustering a number of k-means 
runs on subsamples of the data for initializing a final k-means run. However, the 
use of a “hard” clustering approach like k-means in domains featuring  
overlapping biclusters produces dramatically less accurate results than our  
approach using NMF or PTF for meta-clustering NMF runs (53% match and 
30.6% error vs. 98% match and 0.1% error for our algorithm).5 

The main technical contribution of this paper consists in showing how NMF and 
PTF can be used to solve the cluster correspondence problem for “soft” biclustering 
algorithms such as NMF (which is significantly more involved than the cluster 
correspondence problem for “hard” algorithms and, as far as we know, has not been 
addressed before). The present approach is significantly different from other 
biclustering approaches – for example Cheng’s biclustering [9] is based on a simpler 
additive model that is not scale invariant (problematic in the case of gene expression 
data). Our algorithm not only significantly outperforms all existing approaches 
(especially in terms of recovering the original clusters), but – more importantly – 
provides a conceptually elegant solution to the cluster correspondence problem. 
Furthermore, an initial application of the method to a large lung cancer dataset [10] 
proved computationally tractable and was able to perfectly recover the known 
histological classification of the various lung cancer types in the dataset. (For lack of 
space, we refer to the supplementary information at http://www.ai.ici.ro/ecml05/ 
meyerson.pdf). The genomics applications will be the subject of future research. 

Acknowledgements. I am grateful to Doina Tilivea who helped in the experimental 
evaluation of the algorithms. 
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