
J. Gama et al. (Eds.): ECML 2005, LNAI 3720, pp. 10 – 22, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Clustering and Metaclustering with Nonnegative
Matrix Decompositions

Liviu Badea

 AI Lab, National Institute for Research and Development in Informatics,
8-10 Averescu Blvd., Bucharest, Romania

badea@ici.ro

Abstract. Although very widely used in unsupervised data mining, most
clustering methods are affected by the instability of the resulting clusters w.r.t.
the initialization of the algorithm (as e.g. in k-means). Here we show that this
problem can be elegantly and efficiently tackled by meta-clustering the clusters
produced in several different runs of the algorithm, especially if “soft”
clustering algorithms (such as Nonnegative Matrix Factorization) are used both
at the object- and the meta-level. The essential difference w.r.t. other meta-
clustering approaches consists in the fact that our algorithm detects frequently
occurring sub-clusters (rather than complete clusters) in the various runs, which
allows it to outperform existing algorithms. Additionally, we show how to
perform two-way meta-clustering, i.e. take both object and sample dimensions
of clusters simultaneously into account, a feature which is essential e.g. for
biclustering gene expression data, but has not been considered before.

1 Introduction and Motivation

Clustering is one of the most widely used unsupervised learning methods and the
number of different clustering approaches is overwhelming. However, despite
their wide variety, most clustering methods are affected by a common problem:
the instability of the resulting clusters w.r.t. the initialization of the algorithm (as
in the case of k-means) and w.r.t. slight differences in the input dataset as a result
of resampling the initial data (e.g. in the case of hierarchical clustering). This is
not surprising if we adopt a unifying view of clustering as a constrained
optimization problem, since the fitness landscape of such a complex problem may
involve many different local minima into which the algorithm may get caught
when started off from different initial states.

Although such an instability seems hard to avoid, we may be interested in the
clusters that keep reappearing in the majority of the runs of the algorithm. This is
related to the problem of combining multiple clustering systems, which is the
unsupervised analog of the classifier combination problem [8], a comparatively
simpler problem that has attracted a lot of research in the past decade. Combining
clustering results is more complicated than combining classifiers, as it involves
solving an additional so-called cluster correspondence problem, which amounts
to finding the best matches between clusters generated in different runs.

 Clustering and Metaclustering with Nonnegative Matrix Decompositions 11

The cluster correspondence problem can also be cast as an unsupervised
optimization problem, which can be solved by a (meta-) clustering algorithm.
Choosing an appropriate meta-clustering algorithm for dealing with this problem
crucially depends on the precise notion of cluster correspondence.

A very strict notion of one-to-one correspondence between the clusters of each
pair of clustering runs may be too tough to be realized in most practical cases. For
example, due to the above-mentioned instability, different runs of k-means
clustering with different initializations may easily produce different sets of
clusters, e.g. run1 = {{1,2,3},{4,5}}, run2 = {{1,2}, {3,4,5}}, ….

A more lenient notion of cluster correspondence would look for clusters that
keep reappearing in all runs (while ignoring the rest), but only very few (if any)
such clusters may exist for a large enough number of runs.

An even less restrictive notion could be envisioned by looking for clusters that
are most similar (although not necessarily identical) across all runs. This is
closest to performing something like single-linkage hierarchical clustering on the
sets of clusters produced in the various clustering runs, with the additional
constraint of allowing in each meta-cluster no more than a single cluster from
each individual run. Unfortunately, this constraint will render the meta-clustering
algorithm highly unstable. Thus, while trying to address the instability of (object-
level) clustering using meta-level clustering, we end up with instability in the
meta-clustering algorithm itself. Therefore, a “softer” notion of cluster
correspondence is needed.

The main motivation for this work comes from genomics, more precisely from
clustering gene expression data [2]. (Therefore, in the following we will frequently refer
to clusters of genes rather than clusters of more abstract objects.) Most currently used
clustering algorithms produce non-overlapping clusters, which represents a serious
limitation in this domain, since a gene is typically involved in several biological
processes. Here we adopt a biologically plausible simplifying assumption that the
overlap of influences (biological processes) is additive

 ∑=
csg cgsXX)|,((1)

where Xsg is the expression level of gene g in data sample s, while X(s,g ⎢c) is the
expression level of g in s due to biological process c. We also assume that
X(s,g ⎢c) is multiplicatively decomposable into the expression level Asc of the
biological process (cluster) c in sample s and the membership degree Scg of gene g
in c:

cgsc SAcgsX ⋅=)|,((2)

2 Nonnegative Matrix Factorization as a Soft Clustering Method

Combining (1) and (2) leads to the reformulation of our clustering problem as a
Nonnegative Matrix Factorization (of the ns × ng matrix X as a product of an
ns × nc matrix A and an nc × ng matrix S):

 ∑ ⋅≈
c cgscsg SAX (3)

12 L. Badea

with the additional nonnegativity constraints: Asc ≥ 0, Scg ≥ 0 (4)
(Expression levels and membership degrees cannot be negative.)

Such a problem can be cast as a constrained optimization problem:

minimize ()∑ ⋅−=⋅−=
gs

sgF SAXSAXSAC
,

22

2

1
||||

2

1
),((5)

subject to the nonnegativity constraints (4), and could be solved using Lee and
Seung’s Nonnegative Matrix Factorization (NMF) algorithm [4,5].

As explained above, such a factorization can be viewed as a “soft” clustering
algorithm allowing for overlapping clusters, since we may have several
significant Scg entries on a given column g of S (so a gene g may “belong” to
several clusters c).

Allowing for cluster overlap alleviates but does not completely eliminate the
instability of clustering, since the optimization problem (5), (4) is non-convex.

In particular, the NMF algorithm produces different factorizations (biclusters)
(A(i),S(i)) for different initializations and meta-clustering the resulting “soft”
clusters S(i) could be used to obtain a more stable set of clusters.

However, using a “hard” meta-clustering algorithm would once again entail an
unwanted instability. Therefore, we propose using Nonnegative Matrix
Factorization as a “soft” meta-clustering approach.

This not only alleviates the instability of a “hard” meta-clustering algorithm,
but also produces a “base” set of “cluster prototypes”, out of which all clusters of
all individual runs can be recomposed, despite the fact that they may not
correspond to identically reoccurring clusters in all individual runs (see Figure 1).

Fig. 1. Clusters obtained in different runs are typically combinations of a “base” set of “cluster
prototypes” (rather than identical across all runs)

3 Metaclustering with NMF

We propose using NMF both for object-level clustering and meta-clustering. This
unified approach solves in an elegant manner both the clustering and the cluster
correspondence problem. More precisely, we first run NMF as object-level
clustering r times:

 riSAX ii ,...,1)()(=⋅≈ (6)

where X is the data matrix to be factorized (samples × objects to be factorized),
A(i) (samples × clusters) and S(i) (clusters × objects).

cl1
(1)

cl2
(1)

cl1
(2)

cl2
(2)

cl1
(3)

cl2
(3)

run1 run2 run3

 Clustering and Metaclustering with Nonnegative Matrix Decompositions 13

To allow the comparison of membership degrees Scg for different clusters c, we
scale the rows of S(i) to unit norm by taking advantage of the scaling invariance of
the above factorization (6). More precisely:

Proposition. The NMF objective function (5) is invariant under the
transformation A ← A ⋅ D, S ← D−1⋅ S, where D = diag(d1,…,dnc) is a positive
diagonal matrix.

Since a diagonal matrix D operates on the rows of S and on the columns of A,
we can scale the rows of S to unit norm by using a diagonal scaling

with ∑=
g cgc Sd 2 .

Next, we build a global S-matrix of size r⋅ nc × ng:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

)(

)1(

r

G

S

S

S (7)

by collecting all clusters (i.e. rows of S(i)) from all runs and then use NMF once
more to meta-cluster these clusters (i.e. the rows of SG):

 γα ⋅≈GS (8)

where α and γ are of sizes r⋅ nc × nc and nc × ng respectively. Note that whereas
object level NMF clusters columns of X (e.g. genes in our genomics application),
meta-clustering clusters rows of SG.

Note that α encodes the cluster – metacluster correspondence. On the other
hand, the rows of γ make up a base set of cluster prototypes, out of which all
clusters of all individual runs can be recomposed:

 ∑ ⋅= −+m mmnic
i

c c
S γα ,)1(

)((9)

where)(i
cS is the row c of S(i), while γm is the row m of γ.

Using the notation)(i
cmα for mnic c ,)1(−+α , we can rewrite (9) as

 ∑ ⋅=
m m

i
cm

i
cS γα)()((9')

Ideally (in case of a perfect one-to-one correspondence of clusters across runs),

we would expect the rows of α to contain a single significant entry)(
),(,

i
cimcα , so

that each cluster)(i
cS corresponds to a single cluster prototype),(cimγ (where

m(i,c) is a function of i and c):),(
)(

),(,
)(

cim
i

cimc
i

cS γα ⋅= (10)

Additionally, each meta-cluster m should contain no more than a single cluster

from each individual run, i.e. there should be no significant entries)(
'
i
mcα and)(

"
i
mcα

with c '≠ c". Although it could be easily solved by a hard meta-clustering
algorithm, such an ideal cluster correspondence is only very seldom encountered
in practice, mainly due to the instability of most clustering algorithms.

14 L. Badea

Thus, instead of such a perfect correspondence (10), we settle for a weaker one (9)
in which the rows of α can contain several significant entries, so that all clusters
(rows of SG) are recovered as combinations of cluster prototypes (rows of γ).

The nonnegativity constraints of NMF meta-clustering are essential both for
allowing the interpretation of γ as cluster prototypes as well as for obtaining
sparse factorizations (α,γ). (Experimentally, the rows of α tend to contain
typically one or only very few significant entries.)

In order to make the prototype clusters (rows of γ) directly comparable to the
clusters (rows) from SG, we use the diagonal scaling

γγαα ⋅←⋅← − DD ,1 with ⎟
⎠
⎞

⎜
⎝
⎛= ∑ j jmr

diagD α1 .

The cluster prototypes matrix γ produced by meta-clustering (8) is subsequently
used as seed for a final NMF run aiming at producing the final factorization.
More precisely, the seed for the final NMF run is (A0,γ), where A0 is the
nonnegative least squares solution to γ⋅≈ 0AX .

We thus obtain a final factorization (3), which can be interpreted as a stable
clustering of X allowing for overlapping clusters. The algorithm is summarized
below.

Clustering with Metaclustering (X) → (A, S)

for i = 1,…,r
run NMF(X,A(0i),S(0i)) with random initial matrices A(0i),S(0i) to produce a
factorization with nc clusters:)()(ii SAX ⋅≈
scale the rows of S(i) to unit norm:

)(1)()()(, iiii SDSDAA ⋅←⋅← − with ()∑=
g cgSdiagD 2

end

Construct

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

=
)(

)1(

r

G

S

S

S and use NMF(SG,α(0),γ(0)) (with random α(0),γ(0)) to

produce a factorization (“meta-clustering”) with internal dimensionality nc:

γα ⋅≈GS

scale the columns of α: γγαα ⋅←⋅← − DD ,1 with ()rdiagD
j jm /∑= α

Let A0 be the nonnegative least squares solution to γ⋅≈ 0AX

Run NMF(X,A0,γ) to produce the final factorization SAX ⋅≈

NMF(X, A0, S0) → (A,S)
A ← A0, S ← S0

loop
cg

T

cg
T

cgcg SAA

XA
SS

)(

)(

⋅⋅
⋅

←

 Clustering and Metaclustering with Nonnegative Matrix Decompositions 15

sc
T

sc
T

scsc SSA

SX
AA

)(

)(

⋅⋅
⋅←

until convergence.

4 Sparser Decompositions

Although NMF tends to produce sparse factorizations that are quite immune to
moderate levels of noise [4], even sparser decompositions may be desired to cope
with higher noise levels. An ad-hoc approach to obtaining such sparser
factorizations would fix to zero all the elements below a given threshold of an
NMF factorization and then apply several re-optimization rounds until a fixpoint
is attained. Hoyer's Nonnegative Sparse Coding (NNSC) algorithm [3] is a more
elegant approach that factorizes X≈A⋅S by optimizing an objective function that
combines the fit of the factorization to the original data with a size term
penalizing the non-zero entries of S:

minimize ∑+−=
gc

cgF
SASXSAC

,

2

2
1

),(λ (11)

subject to the nonnegativity constraints Asc ≥ 0, Scg ≥ 0.
(NMF is recovered by setting the size parameter λ to zero, while a non-zero λ
would lead to sparser factorizations.) Unfortunately however, the scaling

invariance of the fitness term 2

2

1
F

ASX − makes the size term ineffective, since

the latter can be forced as small as needed by using a diagonal scaling D with
small enough entries. Additional constraints are therefore needed to render the
size term operational. Since a diagonal matrix D operates on the rows of S and on
the columns of A, we could impose unit norms either for the rows of S, or for the
columns of A.

Unfortunately, the objective function (11) used in [3] produces decompositions
that depend on the scale of the original matrix X (i.e. the decompositions of X and
ηX are essentially different), regardless of the normalization scheme employed.
For example, if we constrain the rows of S to unit norm, then we cannot have
decompositions of the form X ≈ A⋅S and ηX ≈ ηA⋅S, since at least one of these is
in general non-optimal due to the dimensional inhomogeneity of the objective

function w.r.t. A and X: .
2

1
),(

,

22 ∑+−=
gc cgFX SASXSAC ληηη

 On the other

hand, if we constrain the columns of A to unit norm, the decompositions X ≈ A⋅S
and ηX ≈ A⋅ηS cannot be both optimal, again due to the dimensional
inhomogeneity of C, now w.r.t. S and

X: .
2
1

),(
,

22 ∑+−=
gc cgFX SASXSAC ηληηη

Therefore, as long as the size term depends only on S, we are forced to
constrain the columns of A to unit norm, while employing an objective function
that is dimensionally homogeneous in S and X. One such dimensionally
homogeneous objective function is:

16 L. Badea

 22

2
1

),(
FF

SASXSAC λ+−= (12)

which will be minimized subject to the nonnegativity constraints and the
constraints on the norm of the columns of A: 1=cA (i.e. 12 =∑ s scA).

It can be easily verified that this produces scale independent decompositions,
i.e. if X ≈ A⋅S is an optimal decomposition of X, then ηX ≈ A⋅ηS is an optimal
decomposition of ηX.

The constrained optimization problem could be solved with a gradient-based
method. However, in the case of NMF, faster so-called “multiplicative update
rules” exist [5,3], which we have modified for the NNSC problem as follows.

Modified NNSC algorithm
Start with random initial matrices A and S

loop
cg

T

cg
T

cgcg SSAA

XA
SS

)(

)(

λ+⋅⋅
⋅

←

 TSSAXAA ⋅⋅−+←)(µ

 normalize the columns of A to unit norm: 1−⋅← DAA , ()∑=
s scAdiagD 2

until convergence.

Note that we factorize X rather than XT since the sparsity constraint should
affect the clusters of genes (i.e. S) rather than the clusters of samples A. (This is
unlike NMF, for which the factorizations of X and XT are symmetrical.)

4.1 Sparser Factorizations and Noise

To demonstrate that sparser factorizations are better at coping with noise than
simple NMF, we generated a synthetic dataset with highly overlapping clusters
and very large additive noise (the standard deviation of the noise was 0.75 of the
standard deviation of the original data).

We ran our modified NNSC algorithm with increasingly larger λ (ranging from
0 to 0.75) and observed that the gene clusters were recovered almost perfectly
despite the very large noise, especially for small values of λ.

Figure 2 shows the original data without and with noise respectively (upper
row), as well as the reconstructed data (A⋅S) for λ=0.05 and λ=0.75 (lower row).
Note that the reconstructed data is closer to the original noise-free data than to the
noisy original. The following Table shows the relative error computed w.r.t. the
noisy data Xnoisy (i.e.

FnoisyFnoisynoisy XASX −=ε) as well as the relative error w.r.t.

the original data Xorig (before adding noise, i.e.
ForigForigorig XASX −=ε) for

several values of λ ranging from 0 to 0.75.

λ 0 0.02 0.05 0.1 0.2 0.4 0.5 0.75
εnoisy 0.2001 0.2017 0.2053 0.2161 0.2295 0.2452 0.2983 0.3228
εorig 0.1403 0.1375 0.1364 0.1419 0.1544 0.1719 0.2323 0.2604

 Clustering and Metaclustering with Nonnegative Matrix Decompositions 17

X orig
10 20 30

2

4

6

8

10

12

14

16

18

20

X noisy
10 20 30

2

4

6

8

10

12

14

16

18

20

lambda = 0.05
10 20 30

2

4

6

8

10

12

14

16

18

20

lambda = 0.75
10 20 30

2

4

6

8

10

12

14

16

18

20

Fig. 2. A synthetic dataset

Note that εorig is always lower than εnoisy. Also, whereas εnoisy increases as
expected with λ, εorig attains a minimum at λ=0.05 showing that small values of λ
tend to improve not only the clusters, but also the error w.r.t. the original data.

5 Two-Way Meta-clustering

The meta-clustering approach based on (8) takes only the gene clusters (rows of
S(i)) into account. Although this works very well in many cases, it will fail
whenever two clusters correspond to very similar sets of genes, while differing
along the sample dimension. For example, clusters 1 and 2 from Figure 2 are
quite similar along the gene dimension, so a meta-clustering method looking just
at genes would be incapable of discriminating between the two clusters, unless it
also looks at the “sample clusters” A(i). In the following, we show that a slight
generalization of NMF, namely Positive Tensor Factorization (PTF) [6] can be
successfully used to perform two-way meta-clustering, which takes both the gene
and the sample dimensions into account. (As far as we know, this elegant view of
metaclustering as a PTF problem has not been considered before.)

Naively, one would be tempted to try clustering the biclusters1)()(i
c

i
c SA ⋅ instead

of the gene clusters)(i
cS , but this is practically infeasible in most real-life datasets

because it involves factorizing a matrix of size r⋅ nc × ns⋅ ng. On closer inspection,

1)(i

cA is the column c of A(i), while)(i
cS is the row c of S(i).

4

3

1

2

18 L. Badea

however, it turns out that it is not necessary to construct this full-blown matrix –
actually we are searching for a Positive Tensor Factorization of this matrix 2

 ∑ =
⋅⋅≈⋅ cn

k kgsk
i

ck
i

cg
i

sc SA
1

)()()(γβα (14)

The indices in (14) have the following domains: s – samples, g – genes, c –
clusters, k – metaclusters. To simplify the notation, we could merge the indices i
and c into a single index (ic), so that the factorization becomes:

∑ =
⋅⋅≈⋅ cn

k kgskkicgicics SA
1)()()(γβα (14’)

Note that β and γ are the “unified” versions of A(i) and S(i) respectively, while α
encodes the cluster-metacluster correspondence.

The factorization (14’) can be computed using the following multiplicative
update rules (the proofs are straightforward generalizations of those for NMF and
can also be found e.g. in [6]):

)]()[(

)()(
TT

TT SA

γγββα
γβαα
⋅∗⋅⋅

⋅∗⋅∗←

)]()[(

)]([
TT

TSA

γγααβ
γαββ

⋅∗⋅⋅
⋅∗⋅∗← (15)

γββαα
βαγγ

⋅⋅∗⋅
⋅⋅∗∗←

TTT

TT SA

)]()[(

)]([

where ‘∗’ and ‘−−’ denote element-wise multiplication and division of matrices,
while ‘⋅’ is ordinary matrix multiplication.

The PTF factorization (14’) should be contrasted with our previous
metaclustering approach (8) based on NMF:

∑ =
⋅≈ cn

k kg
i

ck
i

cgS
1

)()(γα (8’)

It can be easily seen that whereas (14) groups biclusters by taking both the gene
and the sample dimension into account, (8’) may confuse two biclusters that have
similar gene components (even if they have different sample supports). For
example, (8’) confuses biclusters 1 and 2 from Figure 2, while (14) is able to
perfectly discriminate between the two despite the noise and the difference in
intensity between the two biclusters.

After convergence of the PTF update rule, we normalize the rows of γ to unit
norm (||γk|| = 1), as well as the columns of α such that ∑ =

ci

i
ck r

,

)(α (r being the

number of runs): 3

2 More precisely, we are dealing with the constrained optimization problem

2

,,, 1

)()()(

2

1
),,(min ∑ ∑ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=

=gsci

n

k
kgsk

i
ck

i
cg

i
sc

c

SAC γβαγβα subject to α,β,γ ≥ 0.

3 In order to be able to interpret β and γ as “unified” A(i) and S(i) respectively, we need to have

∑ ≈
c

i
ck 1)(α , i.e. ∑ ≈

ci

i
ck r

,

)(α , since ()∑ ∑∑ =
⋅⋅≈⋅≈ cn

k kgskc

i
ckc

i
cg

i
sc SAX

1

)()()(.γβα

 Clustering and Metaclustering with Nonnegative Matrix Decompositions 19

kg

k
kg γγ

γ
⋅

||||

1

kic

ci kci
kic

r
)(

',')''(
)(α

α
α ⋅

∑

∑ ⋅⋅
ci skkic

k
sk r ,)(

|||| βαγβ

and then run NMF initialized with (β,γ) to produce the final factorization X ≈ A⋅S.

6 Experimental Evaluation

We evaluated our algorithm on synthetic datasets4 generated by continuous latent
variable graphical models as in Figure 3. (The clusters corresponding to the latent
variables Lk overlap in the variables Xi influenced by several Lk.) To generate
nonnegative biclusters as in Figure 2, we set Lk to nonzero values (drawn from the
absolute of a normal distribution) only in certain subsets of samples. The
observable variables Xi were affected by additive normal noise with a standard
deviation)()()0(

ii Xσνεσ ⋅= equal to a fraction ν of the standard deviation of the

noise-free “signal” Xi
(0). (It can be easily seen that this model is equivalent to X =

A(0)⋅S(0) + ε, where X = (X1 … Xng) and S(0)
kj

 are the coefficients associated to the
Lk → Xj edges.)

Fig. 3. Latent variable model for overlapping clusters

The Table below presents a comparison of various combinations of clustering
and meta-clustering algorithms – columns of the Table correspond to clustering
algorithms (k-means, fuzzy k-means [7] and NMF), while the rows are associated
to meta-clustering algorithms (k-means, fuzzy k-means, NMF and PTF) with or
without a final NMF step, as well as to the best individual clustering run
(resampling). The figures in the Table represent average matches of the
reconstructed clusters with the original ones, together with the associated relative
errors (we display both averages and standard deviations for 10 runs of each
metaclustering method with different input data X).

4 The small dataset from Figure 2 with 21 samples and 35 genes allows a human analysis of the

results.

X1 Xi Xj Xk Xng … … …

L1 L2 Lm …

20 L. Badea

Defining the match between two sets of possibly overlapping clusters is
nontrivial. For each cluster C1 from clustering 1, we determine the single cluster
C2 from clustering 2 into which it is best included, i.e. the one with the largest

|||| 121 CCC ∩ . We proceed analogously for the clusters C2 from clustering 2.
Then, for each cluster C1 (from clustering 1), we determine its match

|||| 2121 CCCC ∪∩ with the union C2 of clusters from clustering 2, for which C1 is
the best including cluster (as determined in the previous step). Similarly, we
determine matches for clusters C2 from clustering 2. The average match of the
two clusterings is then the mean of all these matches (for all C1 and all C2).

The Table clearly demonstrates the necessity of using nonnegative decompositions
like NMF (either as individual runs or as the final step) for obtaining reasonable
results. Indeed, the best match without any nonnegative decompositions is 55% and
the lowest relative error 0.2, whereas with nonnegative decompositions, we obtain a
nearly perfect match (98%) with a relative error of 10-3.

match (std match)
relative error (std error)

 Kmeans fcm NMF

kmeans(meta)
0.53 (0.021)
0.306 (0.032)

0.55 (0.058)
0.2 (0.018)

0.81 (0.123)
0.052 (0.033)

kmeans(meta) + NMF(final)
0.62 (0.056)
0.153 (0.059)

0.63 (0.181)
0.094 (0.046)

0.9 (0.148)
0.002 (0.001)

fcm(meta)
0.51 (0.041)
0.315 (0.054)

0.53 (0.011)
0.202 (0.019)

0.92 (0.126)
0.014 (0.004)

fcm(meta) + NMF(final)
0.65 (0.178)
0.092 (0.044)

0.56 (0.024)
0.112 (0.008)

0.92 (0.126)
0.002 (0)

NMF(meta)
0.5 (0.032)
0.313 (0.042)

0.53 (0.009)
0.194 (0.018)

0.69 (0.008)
0.027 (0.043)

NMF(meta) + NMF(final)
0.59 (0.049)
0.132 (0.016)

0.55 (0.008)
0.119 (0.012)

0.74 (0.111)
0.012 (0.025)

PTF(meta)
0.49 (0.044)
0.287 (0.023)

0.53 (0.01)
0.212 (0.019)

0.98 (0.037)
0.023 (0.006)

PTF(meta) + NMF(final)
0.58 (0.04)
0.122 (0.015)

0.55 (0.011)
0.116 (0.014)

0.98 (0.043)
0.001 (0)

Best clustering run
(out of 10)

0.49 (0.017)
0.307 (0.011)

0.53 (0.008)
0.208 (0.018)

0.76 (0.089)
0.001 (0)

Note that clustering runs based on NMF are far superior to other methods. On
the other hand, all tested meta-clustering algorithms perform reasonably well
(with PTF faring best), especially in terms of relative error. However, as already
discussed in Section 5, meta-clustering with NMF does not recover the clusters
very well (average matches are around 74% versus virtually perfect matches for
PTF (98%), 92% for fuzzy k-means and about 90% for k-means+NMF). NMF and
PTF on NMF runs are also quite stable (the std of the match is 0.8% and 4%
respectively).

Also note that although meta-clustering does not always outperform the best
individual run in terms of relative error, it does outperform it in terms of the
match with the original clusters (98% versus 76%).

We also considered larger problems in which the overlapping clusters can be
discriminated by looking at the gene dimension only. As expected, in such cases
the best results are obtained by a combination which uses NMF for meta-
clustering: (NMF, NMF, NMF).

 Clustering and Metaclustering with Nonnegative Matrix Decompositions 21

We also observed that k-means and fuzzy k-means are far inferior to NMF (as
meta-clustering algorithms) in problems with a larger number of clusters. This is
because, as the number of clusters increases, the fraction of perfectly reconstructed
clusters in a limited number of runs decreases sharply. This makes meta-clustering
algorithms like k-means or fuzzy k-means less effective, since these algorithms search
for clusters that reoccur in a large fraction of runs. On the other hand, our approach
using nonnegative decompositions looks for cluster prototypes out of which the
clusters of all individual runs can be recomposed (recall Fig. 1) and therefore may
behave well even with a limited number of runs (such as 10-20 in our experiments).

7 Related Work and Conclusions

Bradley and Fayyad [1] use k-means for meta-clustering a number of k-means
runs on subsamples of the data for initializing a final k-means run. However, the
use of a “hard” clustering approach like k-means in domains featuring
overlapping biclusters produces dramatically less accurate results than our
approach using NMF or PTF for meta-clustering NMF runs (53% match and
30.6% error vs. 98% match and 0.1% error for our algorithm).5

The main technical contribution of this paper consists in showing how NMF and
PTF can be used to solve the cluster correspondence problem for “soft” biclustering
algorithms such as NMF (which is significantly more involved than the cluster
correspondence problem for “hard” algorithms and, as far as we know, has not been
addressed before). The present approach is significantly different from other
biclustering approaches – for example Cheng’s biclustering [9] is based on a simpler
additive model that is not scale invariant (problematic in the case of gene expression
data). Our algorithm not only significantly outperforms all existing approaches
(especially in terms of recovering the original clusters), but – more importantly –
provides a conceptually elegant solution to the cluster correspondence problem.
Furthermore, an initial application of the method to a large lung cancer dataset [10]
proved computationally tractable and was able to perfectly recover the known
histological classification of the various lung cancer types in the dataset. (For lack of
space, we refer to the supplementary information at http://www.ai.ici.ro/ecml05/
meyerson.pdf). The genomics applications will be the subject of future research.

Acknowledgements. I am grateful to Doina Tilivea who helped in the experimental
evaluation of the algorithms.

References

1. Bradley P.S., Fayyad U.M. Refining Initial Points for K-Means Clustering, Proc.
ICML-98, pp. 91-99.

2. Eisen M.B., P.T. Spellman, P.O. Brown, D. Botstein. Cluster analysis and display of
genome-wide expression patterns, PNAS Vol.95, 14863-8, Dec. 1998.

5 However, it is fair to say that [1] did not aim at improving the stability of clustering as we do,

but at handling large datasets.

22 L. Badea

3. Hoyer P.O. Non-negative sparse coding. Neural Networks for Signal Processing XII,
557-565, Martigny, 2002.

4. Lee D.D., H.S. Seung. Learning the parts of objects by non-negative matrix
factorization. Nature, vol. 401, no. 6755, pp. 788-791, 1999.

5. Lee D.D., H.S. Seung. Algorithms for non-negative matrix factorization. Proc.
NIPS*2000, MIT Press, 2001.

6. Welling M., Weber M. Positive tensor factorization. Pattern Recognition Letters
22(12): 1255-1261 (2001).

7. Bezdek J.C. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum
Press, 1981.

8. Bauer E. Kohavi R. An empirical comparison of voting classification algorithms:
bagging, boosting, and variants. Machine Learning 36 (1999) 105-139.

9. Cheng Y. Church G. Biclustering of expression data. Proc. ISMB-2000, 93-103.
10. Bhattacharjee et al. Classification of human lung carcinomas by mRNA expression

profiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci. USA.
2001 Nov. 20;98(24):13790-5.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

