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Improving Gene Expression Data Biclustering Stability 
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Abstract. The small sample sizes and high dimensionality of gene 
expression datasets pose significant problems for unsupervised 
subgroup discovery. While the stability of unidimensional 
clustering algorithms has been previously addressed, generalizing 
existing approaches to biclustering has proved extremely difficult. 
Despite these difficulties, developing a stable biclustering 
algorithm is essential for analyzing gene expression data, where 
genes tend to be co-expressed only for subsets of samples, in 
certain specific biological contexts, so that both gene and sample 
dimensions have to be taken into account simultaneously.  

In this paper, we describe an elegant approach for ensuring 
bicluster stability that combines three ideas. A slight modification 
of nonnegative matrix factorization that allows intercepts for genes 
has proved to be superior to other biclustering methods and is used 
for base-level clustering. A continuous-weight resampling method 
for samples is employed to generate slight perturbations of the 
dataset without sacrificing data and a positive tensor factorization is 
used to extract the biclusters that are common to the various runs. 
Finally, we present an application to a large colon cancer dataset 
for which we find 5 stable subclasses. 

1 INTRODUCTION 
Many real-life application domains, such as bioinformatics, text 
mining and image processing involve data with very high 
dimensionality. For example, gene expression datasets contain 
measurements of the expression levels for virtually all genes of a 
given organism (tens of thousands in eukaryotes), while the number 
of samples is still limited to at most a few hundreds.  

Clustering is one of the most frequently used unsupervised data 
analysis methods in the field of gene expression data analysis. 
However, clustering such high-dimension small-sample data is 
meaningful only if a certain stability of the resulting clusters can be 
achieved. Unfortunately however, virtually all clustering methods 
that are currently used in this field tend to produce highly unstable 
clusters, especially when clustering genes. (The instability 
manifests itself either w.r.t. the initialization of the algorithm, as in 
the case of k-means, or w.r.t. small perturbations of the dataset, in 
the case of deterministic algorithms, such as hierarchical 
clustering.) 
 The stability of clustering has been addressed in previous work 
mainly for unidimensional clustering (dealing with either genes2 or 
samples) [e.g.12]. The main idea of these approaches is to construct 
a consensus among a number of different clusterings obtained 
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either by slight perturbations of the input dataset or due to different 
initializations in the case of nondeterministic algorithms. To 
construct the consensus, one needs the correspondence between the 
clusters of different clusterings. Most of the above mentioned 
approaches avoid determining the cluster correspondence by 
working with so-called connectivity matrices. Such a connectivity 
matrix Tg1g2 has non-zero entries for the items g1, g2 that belong to a 
common cluster. The consensus matrix Mg1g2 is then the average of 
the connectivity matrices for the different clusterings obtained in 
different runs. 
 Unidimensional clustering is not fully satisfactory for gene 
expression data analysis, where genes tend to be co-expressed only 
for certain subsets of samples, corresponding to specific biological 
contexts. Therefore, both the gene and the sample dimension have 
to be taken into account simultaneously.  

Unfortunately, the above-mentioned approach based on 
consensus matrices cannot be applied to bidimensional clustering. 
This is due to the fact that in the case of biclustering one cannot 
simply deal with separate gene and sample connectivity matrices. 
To appreciate this in more detail we need a few notations. Let Xsg 
represent the gene expression matrix value for gene g in sample s, 

the membership degree of gene g in cluster c of clustering i 

and the mean expression level of cluster (biological process) c 

in sample s. Then, the connectivity matrices for genes and samples 
are CS=S(i)T⋅S(i) and respectively CA=A(i)⋅A(i)T.  
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Figure 1.  

Consider the two situations presented in Figure 1. In both 
situations genes (g1, g2) belong to the same gene cluster, so CSg1g2 
is non-zero. Similarly, samples (s1,s2) belong to the same sample 
cluster, so CAs1s2 is non-zero in both situations as well. However, 
since (g1,s1) and (g2,s2) belong to the same bicluster only in the first 
situation (Figure 1, left), dealing with separate gene and sample 
connectivity matrices (CS and CA) would miss this essential 
distinction. The correct generalization of connectivity matrices to 
bidimensional clustering is what we call a connectivity 4-tensor: 
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The consensus 4-tensor associated to different biclustering runs i 
would then be the average of the associated connectivity tensors:  
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Unfortunately, explicitly computing and storing these 
connectivity and consensus tensors is practically infeasible for large 
gene expression datasets. Unlike the unidimensional  case where 
the connectivity and consensus matrices are of sizes quadratic in 
the numbers of items to be clustered (e.g. genes), the 4-tensors 
above are of sizes (ns⋅ng)2 , where ns, ng are the numbers of samples 
and genes respectively. In the colon cancer dataset analyzed below 
ns≈200 and ng≈3000, so we would have to deal with tensors of size 
3.6⋅1011.  

Fortunately, there is a better way of constructing stable 
biclusters. Let us note that connectivity tensors are highly 
redundant (i.e. are of lower rank), the only reason for constructing 
them being due to the difficulty of determining the correspondence 
between similar biclusters in different clustering runs, especially 
when dealing with soft clustering algorithms. 

To deal with this problem, we use the meta-clustering approach 
from [8,14], which is based on a positive tensor factorization (PTF) 
of the biclusters obtained in clustering runs i. This meta-clustering 
approach based on PTF solves in an elegant manner the cluster 
correspondence problem and tends to produce stable biclusters, but 
is still sub-optimal in certain respects. First, it uses nonnegative 
matrix factorization (NMF) [1,2] as base-level clustering algorithm. 
NMF performs very well for biclustering gene expression data, 
even for data with many irrelevant genes1, but it tends to 
reconstruct the average expression levels of such irrelevant genes as 
superpositions of induced clusters. While this reduces the 
reconstruction error, it also produces artificial cluster membership 
coefficients for such irrelevant genes. Here, we solve this problem 
by slightly generalizing NMF to allow for “gene intercepts”. 

Secondly, PTF simultaneously determines the bicluster 
correspondence and constructs a consensus of the biclusters 
obtained in several runs of NMF starting with different 
initializations. Here, we consider an additional type of perturbation 
to the data based on resampling to ensure an increased stability of 
the resulting clusters. Various methods based on resampling have 
been applied in the context of unidimensional clustering (e.g. [12, 
etc]). Unfortunately, virtually all proposed approaches have 
significant drawbacks. For example, in bootstrapping, 
approximately one third of the original samples are discarded, 
potentially affecting the final results, especially in the small-sample 
case. The same holds for other subsampling approaches. On the 
other hand, methods based on resampling with replacement may be 
affected by spurious clusters constructed from sample replicates. 
Recently, Dresen et al [13] introduced a resampling method based 
on so-called continuous weights that avoids these problems by a 
simulated resampling, in which the (integer) numbers of 
resamplings of each sample are replaced with continuous weights. 
The difficult part consists in adapting the specific clustering 
algorithm2 to work with such weighted samples instead of the 
resampled ones. 

In this paper, we show how NMF can be generalized to deal with 
continous-weight resampling. We apply our approach to a large 
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colon adenocarcinoma dataset [10,11] for which we discover 5 
stable clusters, one of these containing normal colon samples. 

2 BICLUSTERING USING NONNEGATIVE 
MATRIX FACTORIZATIONS WITH 
INTERCEPT 

An elegant method of biclustering consists in factorizing the gene 
expression matrix X as a product of an ns×nc (samples × clusters) 
matrix A and an nc×ng (clusters × genes) matrix S 3 

gc cgscsg SoSAX +⋅≈ ∑                (3) 

subject to additional nonnegativity constraints:   
0,0,0 ≥≥≥ gcgsc SoSA                 (4) 

which express the obvious fact that expression levels and cluster 
membership degrees cannot be negative. 

Factorization (3) differs from the standard NMF factorization 
[1,2] by the additional “gene intercept” So,  whose main role 
consists in absorbing the constant expression levels of genes, 
thereby making the cluster samples Scg “cleaner”. 

The factorization (3-4) can be regarded more formally as a 
constrained optimization problem: 
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subject to the nonnegativity constraints (4). This problem can be 
solved using an iterative algorithm with the following 
multiplicative update rules (which can be easily derived using the 
method of Lee and Seung [2]): 
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where e is a column vector of 1 of size equal to the number of 
samples and ε  is a regularization parameter (a very small positive 
number). 

The algorithm initializes A, S and So with random entries, so that 
(slightly) different solutions may be obtained in different runs. 
(This is due to the non-convex nature of the optimization problem 
(5), which in general has many different local minima.)  

We can view the different solutions obtained by the generalized 
NMFi

 algorithm as overfitted solutions, whose consensus we’ll need 
to construct. For combatting overfitting, we consider additional 
perturbations using continuous weight resampling as explained 
below.  

We have observed experimentally that adding intercepts to 
standard NMF leads to significant improvements in the quality of 
the recovered clusters. More precisely, the genes with little 
variation are reconstructed by the standard NMF algorithm from 
combinations of clusters, while NMFi uses the additional degrees of 
freedom So to produce null cluster membership degrees Scg for 
these genes. Moreover, NMFi recovers with much more accuracy 
than standard NMF the original sample clusters, the standard NMF 
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algorithm being confused by the cluster overlaps. (See the Figure in 
Supplementary material at www.ai.ici.ro/ecai08/). This improvement 
in recovery of the original clusters is very important in our 
application, where we aim at a correct sub-classification of 
samples. 

3 NMF WITH CONTINUOUS WEIGHT 
RESAMPLING 

A frequently used method to obtain more stable clusters consists in 
building a consensus of several individual clusterings constructed 
from perturbations of the original dataset. As already mentioned in 
the Introduction, various types of perturbations based on 
resampling have been applied in the context of one-way clustering 
(e.g. [12]). However, all of these have drawbacks related either to 
loss of precious original data (a problem which is exacerbated in 
the case of small sample sizes), or to potential spurious clusters 
built from replicates of samples resampled several times. Recently, 
Dresen et al. [13] have addressed this problem by generalizing the 
(integer) numbers of resamplings of each sample to continuous 
weights. This retains the full dimensionality of the original data and 
has proved superior to bootstrapping especially for small numbers 
of samples. However, the approach requires modifying the original 
clustering algorithm to simulate working with “continuous numbers 
of samples”. While [13] show how this can be done with 
correlation-based hierarchical clustering (by modifying Pearson 
correlation to take into account weighted samples), generalizing 
this approach to NMF factorization is non-trivial. 

In the following we show how NMFi can be adapted to deal with 
continuous weight resampling. 

The distribution of a drawing with replacement is the binomial 
distribution, which is approximated by the Poisson distribution for 
large numbers of observations. Since in a bootstrap sample the 
expected value and the variance is 1, [13] used a continuous 
approximation of the Poisson distribution, namely a log-normal 
distribution with mean and variance 1. 

In the following, we assume that the continuous sample weights 
ws

 are drawn from a log-normal distribution with equal mean and 
variance M. (The results improve as M is increased.) 

Generalizing NMFi to deal with continuous weight resampling 
amounts to replacing the optimization problem (5) by the 
following: 
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The associated multiplicative update rules can be easily shown 
to take the following form: 
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where W = diag(ws) is the diagonal matrix with ws on the diagonal. 
We will call the factorization obtained by solving the optimization 
problem (7) a w-factorization and the corresponding algorithm 
NMFir. 

It is interesting to note that w-factorizations can be reduced to 
standard NMF factorizations, but only in the absence of intercepts. 
More precisely, we have the following result. 

Proposition. In the case of no intercepts, (A,S) is a w-factorization 
of X if and only if (V⋅A,S) is a standard factorization of V⋅X, where 

( )swdiagV = . 

The fact that intercepts interact with resampling weights shows 
that the generalization is non-trivial. 

4 CONSENSUS CLUSTERING WITH PTF  
Starting with a number of NMFir runs 

riSoSAX iii ,...,1)()()( =+⋅≈          (9) 
we construct a consensus biclustering using a Positive Tensor 
Factorization (PTF) [3] of the biclusters4, which simultaneously 
determines the bicluster correpondence α and the consensus 
biclustering (β,γ) [8,14]: 
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where s are samples, g, genes, c clusters and k metaclusters (or 
“consensus clusters”).5 β and γ represent the consensus of A(i) and 
S(i) respectively. More precisely, the columns β⋅k of β and the 
corresponding rows γk⋅ of γ  make up a base set of bicluster 
prototypes β⋅k⋅γk⋅ out of which all biclusters of all individual runs 
can be recomposed, while α encodes the (bi)cluster-metacluster 
correspondence. The factorization (10) can be computed using the 
following multiplicative update rules [8,14]: 
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where ‘∗’ and ‘−−’ represent element-wise multiplication and 
division of matrices, while ‘⋅’ is ordinary matrix multiplication. 
After convergence of the PTF update rules, the rows of γ are 
normalized to unit norm to make the gene clusters directly 
comparable to each other, whereas the columns of α are 
normalized such that ∑ =

ci kic r
, )(α  (r is the number of runs). 

Then, NMFir initialized with ),,( 0γγβ  is run6 to produce the 

final factorization X ≈ A⋅S + e⋅So.  
 The nonnegativity constraints of PTF meta-clustering are 
essential both for allowing the interpretation of β⋅k⋅γk. as consensus 
biclusters, as well as for obtaining sparse factorizations. In practice, 
the rows of the correspondence matrix α tend to contain typically 
one or only very few significant entries. Therefore, α can be used 
to assess the stability of the individual clusterings (A(i),S(i),So(i)). 
 To do this, we diagonalize all α(i) by row permutations 
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such that the largest elements7 of α(i) end up on the diagonal α(ik)k.  
We then apply these row permutations to the gene cluster 

matrices S(i) which are thereby synchronized with the consensus 
matrix γ 
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At this point, we can estimate the stabilities of individual entries 
of the gene cluster matrices using the following instability measure: 

kgi kg
i
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which gauges the deviation of the individual runs from the 
consensus. It can be easily shown that (14) is equivalent to  
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A similar measure can be defined for the sample matrices A(i). 
While using α we can discard entire unstable clusters, our 

instability measure may be used to gauge our confidence in the 
individual gene or sample cluster values obtained. 

5 EXPERIMENTAL EVALUATION  
We first evaluated our approach on simulated data generated 
according to the following hidden-variable graphical model  

 
in which the hidden variables correspond to potentially overlapping 
biclusters: X = A⋅S +ε. The test contains 50 samples, 100 genes and 
the structure is random with 10 samples and 20 genes per bicluster. 
The logarithms of the hidden variables A were normally distributed 
with μsignal ranging between 4 and 8, σsignal=1 in the clusters and 
μbkg =3, σbkgl=1 outside.  
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Figure 2. Variation of bicluster match with signal/noise ratio 

Although all algorithms produce quite low relative 
errors  (k-means – slightly higher ones), 

they behave differently when it comes to recovering the original 
clusters. Since the match of the recovered clusters with the original 
ones is more important than the relative error (see [

||||/|||| XSoeSAXrel ⋅−⋅−=ε

8] for our 
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the diagonal if it occurs on a row that had been permuted previously. 

definition of the match between two sets of possibly overlapping 
clusters), Figure 2 shows the variation of the match with the signal 
to background ratio. PTF with intercept and PTF with intercept and 
resampling behave very similarly, but outperform simple PTF [14] 
as well as k-means. Although we could not show that resampling is 
essentially better than PTF with intercepts in simulated data, we 
believe that it is useful for estimating cluster confidence factors in 
our real-life application.  

Colon cancer dataset. The most frequent colon cancer type, 
sporadic colon adenocarcinoma, is very heterogeneous and its best 
current classification based on the presence or absence of 
microsatellite instabilities (MSI-L, MSI-H and MSS) [9] is far from 
ideal from the point of view of gene expression. To obtain a more 
accurate subclassification based on gene expression profiles, we 
have applied our approach to a large colon cancer dataset (204 
samples) containing 182 colon adenocarcinoma samples from the 
expO database [10] and 22 control (“normal”) samples from [11]. 
(All of these had been measured on Affymetrix U133 Plus 2.0 
chips.) The combined raw scanning data was preprocessed with the 
RMA normalization and summarization algorithm. (The 
logarithmic form of the gene expression matrix was subsequently 
used, since gene expression values are approximately log-normally 
distributed.) After eliminating the probe-sets (genes) with relatively 
low expression as well as those with a nearly constant expression 
value8, we were left with 3708 probe-sets. Finally, the Euclidean 
norms of the expression levels for the individual genes were 
normalized to 1 to disallow genes with higher absolute expression 
values to overshadow the other genes in the factorization. 

An important parameter of the factorization is its internal 
dimensionality (the number of clusters nc). To avoid overfitting, we 
estimated the number of clusters nc as the largest number of 
dimensions around which the change in relative error 

cdn
dε of the 

factorization of the real data is still significantly larger than the 
change in relative error obtained for a randomized dataset9 (similar 
to [5]) – see also Figure 3 below. Using this analysis we estimated 
the internal dimensionality of the dataset to be around 5. 

 
Figure 3. Determining the internal dimensionality of the dataset 

We then ran PTF with 50 NMFir iterations and nc=5. Figure 4 
depicts the sample cluster matrix A. Note that cluster 5 corresponds 
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8 Only genes with an average expression value over 100 and with a standard 
deviation above 150 were retained. 
9 The randomized dataset was obtained by randomly permuting for each 
gene its expression levels in the various samples. The original distribution of 
the gene expression levels is thereby preserved. 

 
 
 
 

 



 
 
 
 
 

to the normal control samples from [11]. To make sure that this 
“normal cluster” is not a “batch effect” (due to the fact that we have 
combined two different datasets), we first looked at the expression 
of known housekeeping genes across the two datasets – overall, 
these turned out to have no particular dataset bias. Furthermore, the 
dataset from [11] contains besides normal samples from healthy 
individuals, also “normal” samples from individuals afflicted by 
early-onset colon cancer. We interpret the fact that a few of these 
cancer susceptibility samples but none of the samples from healthy 
individuals cluster in the colon cancer classes 1-4 as evidence 
against a systematic batch bias. 
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Figure 4. The sample cluster matrix A 

The gene clusters contain genes with a well known involvement 
in colon cancer. For example, cluster 2 contains the regenerating 
islet-derived family member 4 REG4, which is known to be 
involved in inflammatory and metaplastic responses of the 
gastrointestinal epithelium10 [PMID:12819006], its  overexpression 
being an early event in colorectal carcinogenesis [PMID: 
14550954]. Cluster 2 contains three additional genes from the same 
family, with documented oncogenic properties: REG1B, REG1A, 
REG3A. Cluster 3 contains several genes involved in the TGF-beta 
pathway: osteopontin (SPP1), activin A (INHBA), thrombospondin 
1 (THSB1), the plasminogen activator inhibitor type 1 (SERPINE1), 
etc. Cluster 4 contains (with a high membership coefficient) the 
teratocarcinoma-derived growth factor 1 TDGF1, which has been 
proposed as a biomarker for colon and breast carcinoma 
[PMID:16951234]. TDGF1 expression has been recently shown to 
be controlled by the  canonical Wnt/beta-catenin/TCF signaling 
pathway (the “classical” textbook pathway in colon cancer) 
[PMID:17291450], as well as by TGF-beta-like pathways [PMID: 
17941089]. The cluster 1 gene MYH11 has been very recently 
linked to microsatellite-stable HNPCC and sporadic colon cancer 
[PMID:17950328], while a polymorphism in the chemokine ligand 
12 CXCL12 has been found in colon cancer patients [PMID: 
17143542]. Finally, the “normal” class 5 is characterized by genes 
down-regulated in colon cancer, such as the carcinoembryonic 
antigen-related cell adhesion molecule 7 CEACAM7, whose 
                                                                 
10 Due to lack of space, we refer to medical publications by their PubmedID. 

downregulation is known to be an early event in colorectal 
tumorigenesis [PMID:9135022]. (More details on the biclusters and 
the associated genes can be found in the supplementary material at 
www.ai.ici.ro/ecai08/.) 

6 CONCLUSIONS 
Soft biclustering is particularly difficult in the case of overlapping 
clusters, which are ubiquitous for gene expression data. 
Nonnegative factorizations like NMF are good for this purpose, but 
we show that they can be improved by adding intercepts. On the 
other hand, NMF factorizations depend on their initialization. 
Instead of regarding this as a drawback, we used PTF to construct a 
consensus factorization that hopefully reduces overfitting. 
Generating perturbations of the data by simulated resampling allow 
estimations of bicluster stability, which is especially important 
when looking at gene expression biclusters that typically contain 
hundreds of genes. Finally, we have applied the approach to a large 
colon cancer dataset, for which our approach finds 5 stable 
biclusters (one of which contains the genes active in the normal 
samples and down-regulated in colon cancer). Among the genes 
with the most significant coefficients, we find many with a known 
involvement in colon cancer. Our subclassification could thus be 
used to systematize the roles of these genes in the various subtypes. 
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