
 
 
 
 
 

1 INTRODUCTION AND MOTIVATION 
Although clustering is probably the most frequently used tool for 
data mining gene expression data, existing clustering approaches 
face at least one of the following problems in this domain: a huge 
number of variables (genes) as compared to the number of samples, 
high noise levels, the inability to naturally deal with overlapping 
clusters and the difficulty in clustering genes and samples 
simultaneously. Fuzzy k-means or Nonnegative Matrix 
Factorization (NMF) [1] could be used to produce potentially 
overlapping clusters, but these approaches are affected by a 
significant problem: the instability of the resulting clusters w.r.t. the 
initialization of the algorithm. This is not surprising if we adopt a 
unifying view of clustering as a constrained optimization problem, 
since the fitness landscape of such a complex problem may involve 
many different local minima into which the algorithm may get 
caught when started off from different initial states. And although 
such an instability seems hard to avoid, we may be interested in the 
clusters that keep reappearing in the majority of the runs of the 
algorithm. Note that combining clustering results is more 
complicated than combining classifiers, as it involves solving an 
additional so-called cluster correspondence problem, which 
amounts to finding the best matches between clusters generated in 
different runs. The cluster correspondence problem itself could be 
solved by a suitable meta-clustering algorithm. 

2 TWO-WAY METACLUSTERING WITH PTF 
In this paper we make the simplifying assumption that the overlap 
of influences (biological processes) is additive ∑ ⋅≈

c cgscsg SAX  (1) 

where Xsg is the expression level of gene g in data sample s, while 
the expression level of g in s due to biological process c is 
multiplicatively decomposable into the expression level Asc of the 
biological process (cluster) c in sample s and the membership 
degree Scg of gene g in c. Since expression levels and membership 
degrees cannot be negative: Asc ≥ 0,  Scg ≥ 0, our clustering problem 
(1) can be viewed as a nonnegative factorization and could be 
solved using Lee and Seung’s seminal Nonnegative Matrix 
Factorization (NMF) algorithm [1]. Such a factorization can be 
viewed as a “soft” clustering algorithm allowing for overlapping 
clusters, since we may have several significant Scg entries on a 
given column g of S (a gene g may “belong” to several clusters c). 

Allowing for cluster overlap alleviates but does not completely 
eliminate the instability of clustering, since the NMF algorithm 
produces different factorizations (biclusters) (A(i),S(i)) for different 
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initializations, so meta-clustering the resulting “soft” clusters might 
be needed to obtain a more stable set of clusters.  

In this paper, we show that a generalization of NMF called 
Positive Tensor Factorization (PTF) [2] is precisely the tool needed 
for meta-clustering “soft”, potentially overlapping biclusters 
obtained by NMF object-level clustering. This unified approach 
solves in an elegant manner both the clustering and the cluster 
correspondence problem. More precisely, we first run NMF as 
object-level clustering r times: )()( ii SAX ⋅≈ . (To allow the 
comparison of membership degrees Scg for different clusters c, we 
scale the rows of S(i) to unit norm by taking advantage of the scaling 
invariance of the factorization.) Next, we meta-cluster the resulting 
biclusters (A(i), S(i)). This is in contrast with as far as we know all 
existing (one-way) meta-clustering approaches, which take only one 
dimension into account and fail whenever two clusters correspond 
to very similar sets of genes, while differing along the sample 
dimension. The following Positive Tensor Factorization (PTF) of 
the biclusters (A(i), S(i)) represents a two-way meta-clustering:  

∑ =
⋅⋅≈⋅ cn

k kgskkicgicics SA
1 )()()( γβα                (2) 

where k are metacluster indices. (To simplify the notation, we 
merged the indices i and c into a single index (ic).) 

The columns β⋅k of β and the corresponding rows γk⋅ of γ 
make up a base set of bicluster prototypes β⋅k⋅γk⋅ out of which all 
biclusters of all individual runs can be recomposed, while α  
encodes the (bi)cluster-metacluster correspondence. Instead of 
a perfect bicluster correspondence, we settle for a weaker one 
(2) in which the rows of α  can contain several significant 
entries, so that all biclusters )()( i

c
i

c SA ⋅ are recovered as 

combinations of bicluster prototypes β⋅k⋅γk⋅. The nonnegativity 
constraints of PTF meta-clustering are essential for obtaining 
sparse factorizations. (Experimentally, the rows of α  tend to 
contain typically one or only very few significant entries.) The 
factorization (2) can be computed using the following 
multiplicative update rules:    
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where ‘∗ ’ and ‘−−’ denote element-wise multiplication and 
division of matrices, while ‘⋅’ is ordinary matrix multiplication. 

After convergence of the PTF update rules, we make the 
prototype gene clusters directly comparable to each other by 
normalizing the rows of γ to unit norm, as well as the columns 
of α  such that ∑ =

ci kic r
, )(α  and then run NMF initialized with 

(β,γ) to produce the final factorization X ≈ A⋅S.  
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3 EVALUATION ON SYNTHETIC DATA 
We evaluated our algorithm on synthetic datasets that match as 
closely as possible real microarray data. Clusters were modelled 
using a hidden-variable model X=A⋅S+ε, in which each hidden 
variable Ac corresponds to the cluster of genes influenced by Ac. 
We sampled the hidden variables from a log2-normal 
distribution with parameters µ=2, σ=0.5, while the influence 
coefficients Scg between hidden and observable variables were 
sampled from a uniform distribution over the interval [1,2]. 
Finally, we added log2-normally distributed noise ε with 
parameters µnoise=0, σnoise=0.5. We chose problem dimensions 
of the order of our real-world application: nsamples=50, 
ngenes=100, number of genes (respectively samples) per cluster 
30 (respectively 15). We compared 4 meta-clustering algorithms 
(fuzzy k-means, NMF, PTF and the best run) over 10 object-
level NMF clustering runs. (Other object level clustering 
methods perform very poorly and are not shown here). Although 
all algorithms produce quite low relative errors (under 16%, 
except for fuzzy k-means which misbehaves for large numbers 
of clusters), they behave quite differently when it comes to 
recovering the original clusters. In a certain way, the match of 
the recovered clusters with the original ones is more important 
than the relative error. Defining the match between two sets of 
possibly overlapping clusters is nontrivial. For each cluster C1 
from clustering 1, we determine the single cluster C2 from 
clustering 2 into which it is best included, i.e. the one with the 
largest |C1∩C2|/|C1|. We proceed analogously for the clusters C2 
from clustering 2. Then, for each cluster C1 (from clustering 1), 
we determine its match |C1∩C2|/|C1∪ C2| with the union C2 of 
clusters from clustering 2, for which C1 is the best including 
cluster (as determined in the previous step). Similarly, we 
determine matches for clusters C2 from clustering 2. The 
average match of the two clusterings is then the mean of all 
these matches (for all C1 and all C2). 
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The Figure above shows that PTF consistently outperforms 
the other meta-clustering algorithms in terms of recovering the 
original clusters. Note that since clusters were generated 
randomly, their overlap increases with their number, so it is 
increasingly difficult for the meta-clustering algorithm to 
discern between them, leading to a decreasing match. We also 
observed an inverse correlation between bicluster overlap and 
matches (Pearson correlation coefficient -0.92). Among all 
object-level clustering algorithms tried (k-means, fuzzy k-means 
and NMF), only NMF behaves consistently well. 

4 METACLUSTERING A LUNG CANCER 
GENE EXPRESSION DATASET 

In the following we show that metaclustering is successful at 
biclustering a large lung cancer dataset from the Meyerson lab [3], 
containing 186 lung tumor samples (139 adenocarcinomas, 21 
squamous cell lung carcinomas, 6 small cell lung cancers, 20 
pulmonary carcinoids) and 17 normal lung samples. For testing our 
metaclustering algorithm, we first selected a subset of genes (251) 
that are differentially expressed between the classes (using a SNR 
measure). More precisely, we selected the genes with an average 
expression level over 100 and |SNR| > 2 for at least one of the 
classes. Since adenocarcinoma subclasses are poorly understood at 
the molecular level, we discarded the adeno samples from the 
dataset and used the histological classification of samples provided 
in the supplementary material to the original paper [3] as a gold 
standard for the evaluation of the biclustering results. To eliminate 
the bias towards genes with high expression values, all genes were 
scaled to equal norms. Since nonnegative factorizations like NMF 
cannot directly account for gene down-regulation, we extended the 
gene expression matrix with new “down-regulated genes”  
g’ = pos(mean(gnormal) − g) associated to the original genes g, where 
mean(gnormal) is the average of the gene over the normal samples 
and pos(⋅) is the step function. We then used our PTF 
metaclustering algorithm to factorize the extended gene expression 
matrix into 4 clusters with 20 NMF runs.  

The algorithm recovered the sample clusters with high accuracy, 
as can be seen in the following Figure. Note that the overlap 
between the small cell and carcinoid sample clusters (columns 3 
and 1 of A in the Figure) has a biological interpretation: both 

contain samples of 
tumors of 
neuroendocrine type. 
The low mixing 
coefficients indicate 
however that 
carcinoids are highly 
divergent from the 
malignant small cell 
tumors. We also 
looked in detail at 
some known marker 
genes. For example, 
the known small cell 
marker achaete scute 

1 is specific to the small cell cluster, while keratin 5 is specific to 
the squamous cluster. On the other hand, known proliferative 
markers like PCNA (proliferating cell nuclear antigen), MCM2 and 
MCM6 are common to the small cell and squamous clusters, as 
expected. Overall, our metaclustering algorithm proved quite robust 
at rediscovering the known histological classification of the various 
lung cancer types in the Meyerson dataset. 
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