
 
 
 
 
 

Abstract. Determining the direction of causal influence from 
observational data only is essential in many applications, such as 
the reconstruction of genetic networks from microarray data. As 
opposed to many probabilistic network inference algorithms which 
were designed to induce just statistical models of the data, 
Conditional Independence (CI) based algorithms are theoretically 
able to infer true causal models from observational data only. But 
unfortunately, the small sample sizes available from current 
microarray experiments render the determination of causal direction 
highly inaccurate. Here we show that this essential aspect of CI-
based algorithms can be significantly improved by double-checking 
certain key statistical tests and by reconciling potential 
inconsistencies using a simple constraint propagation scheme. 

1 INTRODUCTION AND MOTIVATION 
The problem of inferring the structure of very large probabilistic 
networks has recently received a significant boost due to 
bioinformatics applications, especially those dealing with the 
reconstruction of genetic networks from microarray data. While 
temporal gene expression data (produced for example in the study 
of developmental processes) contains enough causal information in 
the temporal data sequence to allow the reconstruction of the causal 
networks with a reasonable accuracy, microarray data from steady 
states of the cell (for example, associated to various disease states) 
has proved, as far as we know, intractable for current structure 
inference algorithms. The main difficulties are related to the very 
large numbers of variables (i.e. genes – of the order of hundreds to 
thousands), the presence of many hidden (latent) variables, the 
small sample sizes available (tens to a few hundreds), as well as to 
the tough requirement of reconstructing the true causal structure 
rather than just a statistically equivalent one.  

As the small sample sizes available are not enough to completely 
determine the network, more sophisticated approaches using e.g. 
Bayesian model averaging [2] have been proposed to deal with 
network structure in a Bayesian manner, especially when there 
might be many models (usually exponentially many) with a non-
negligible posterior. However, model averaging cannot deal with 
the large number of variables in microarray data.  

On the other hand, state of the art scoring-based algorithms 
(either based on simple model selection or on model averaging) 
were designed to induce statistical models of the data, rather than 
true causal models. Thus, the edges induced by such algorithms and 
especially their orientations do not necessarily reflect (the direction 
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of) causal influence, as several distinct causal models, which differ 
in edge orientation, can be statistically equivalent [4]. 

Conditional-independence (CI) based algorithms [4,6] infer 
entire equivalence classes of graph models, thereby enabling a 
causal interpretation of the resulting edge orientations. (Edges 
with the same orientation in all statistically equivalent models 
represent true causal influences since the true causal model must be 
among the statistically equivalent models.) Even with small sample 
sizes and large numbers of variables (e.g. 73 samples and 1000 
variables), we have been able to use such CI-based algorithms for 
recovering at least the most influential parts of given probabilistic 
networks. However, existing CI algorithms tend to be highly 
inaccurate in orienting edges (i.e. in determining the direction of 
causal influence) [6], especially in the case of few samples. In this 
paper we show that edge orientation can be significantly improved 
by double-checking certain key statistical tests and by reconciling 
potential inconsistencies using a simple constraint propagation 
scheme. 

2 AN IMPROVED CONSTRAINT-BASED 
ALGORITHM  
Conditional-independence based algorithms like IC* of Pearl and 
Verma [4] or the more efficient Fast Causal Inference (FCI) 
algorithm of Spirtes et al. [6] start with a completely connected 
network and simply use conditional independence (CI) tests to find 
separators for edges representing indirect influences. Finally, edge 
endpoints are oriented based on the separators found.  

Although IC* and FCI are very close to the requirements of our 
bioinformatics application domain, they still have certain important 
drawbacks: as they construct causal structures by categorical  
inference based on the results of conditional independence tests, 
they are sensitive to the high amount of noise in the microarray data 
as well as to the small sample sizes.  

In the following we show how CI-based methods (and especially 
their edge orientation phase) can be made more robust when 
dealing with small and noisy samples. Since the small sample size 
may support several potentially conflicting models, we provide 
means for coping with such inconsistencies by strengthening the 
collider and non-collider tests of FCI while preserving their 
efficiency, and by eliminating the remaining inconsistencies 
(anomalies) as well as all the features inferred from these. 

We refer to [4] for the basic notions on Bayesian networks. The 
output of our QFCI algorithm described below will be a Partial 
Ancestral Graph (PAG), which is a concise representation of an 
entire equivalence class of graph models. Unlike standard PAGs, 
ours have confidence factors attached to the undirected edges, as 
well as to directed edge endpoints.
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 In the following, we use the notations of [6] for describing 
PAGs. Briefly, edges can have three kinds of endpoints in a PAG: 
‘−’, ‘>’ and ‘ο’. We also use the additional meta-symbol ‘∗’ that 
stands for any of the three kinds of endpoints. An ‘−’ endpoint at Y 
for an edge X ∗−− Y denotes the fact that Y is an ancestor of X in 
every graph of the equivalence class represented by the PAG, while 
an ‘>’ endpoint at Y for X ∗−> Y means that Y is not an ancestor of 
X. Finally, an ‘ο’ endpoint places no restriction on the ancestor 
relationships. (See [6] for more details.) 

A collider is a structure of the form X ∗−> Y <−∗ Z. A collider is 
called unshielded iff X and Z are not adjacent in the PAG. 

In the following, we present a constraint-based causal inference 
algorithm, QFCI, which aims at improving the robustness of the 
FCI algorithm in the face of noise and small sample sizes.  

Employing a two-valued logic for combining the results of 
conditional independence tests in noisy domains may lead to 
inconsistencies, or anomalies. In fact, we have observed the 
occurrence of anomalies not only in microarray datasets (such as 
the Garber lung carcinoma study [3], the Rosetta Compendium of 
yeast microarray experiments and the Spellman yeast cell cycle 
data), but also in synthetic data. The most important type of 
anomaly observed was a so-called “collider anomaly”, which is due 
to the inconsistencies between different colliders at a given node Y. 

Recall that FCI recognizes colliders as follows: for non-adjacent 
X and Z, X∗−∗Y∗−∗Z is a collider iff Y∉Sep(X,Z), where Sep(X,Z) 
is the first separating set found for X and Z:  X ⊥ Z | Sep(X,Z). 

Definition (collider anomaly) Two unshielded colliders detected 
by the FCI algorithm  

X1 ∗−> Y <−∗ X2  (for which Y∉Sep(X1,X2))  and  
Z1 ∗−> Y <−∗ Z2  (for which Y∉Sep(Z1,Z2))  

are inconsistent w.r.t. the current set of separators Sep (or short, 
Sep-inconsistent) iff ∃i,j∈{1,2} such that Xi and Zj are not adjacent 
and Xi ∗−> Y <−∗ Zj is not a collider w.r.t. Sep, i.e. Y∈Sep(Xi,Zj). 

As can be seen in the following Figure, a collider anomaly 
appears whenever a pair of arrowheads from different colliders 
(such as X1 ∗−> Y <−∗ Z1) doesn’t form a collider according to Sep. 

Example. An example of a collider 
anomaly (in a dataset of size 1000 
sampled from a synthetic network 
with 40 variables and 35 edges) 
involves the colliders 
X7∗−>X32<−∗X22 (X32 ∉ 
Sep(X7,X22)=∅) and 
X7∗−>X32<−∗X36 (X32 ∉ Sep(X7,X36)={X39}) for which  
X22 ∗−> X32 <−∗ X36 is not a collider w.r.t. Sep (since X32 ∈ 
Sep(X22,X36) ={X32}). 
 
 
 
 
 
 
 
Figure 2. (a) The true graph (b) The collider anomaly 

In other words, we have to place an arrow X22 ∗−> X32 (because 
X7 ∗−> X32 <−∗ X22 is a collider w.r.t. Sep) and an arrow X36 ∗−> 

X32 (since X7 ∗−> X32 <−∗ X36 is also a collider w.r.t. Sep), but 
these two arrows are inconsistent since X32 ∈ Sep(X22,X36). 

As can be seen by looking at the true graph in Figure 2(a), the 
inconsistency was due in this case to wrongly recognizing  
X7 ∗−> X32 <−∗ X36 as a collider based on Sep(X7,X36)={X39} 
which does not contain X32. The fact that Sep records only a single 
separator set (among potentially many others) makes the collider 
recognition rule of FCI sensitive to errors in the independence test. 
In this specific case, the error in Sep(X7,X36) was due to a type-II 
error in the test X7 ⊥ X36 | X39, which succeeded (p-value=0.728 > 
α=0.05, for N=1000) despite the fact that X39 does not d-separate 
X7 from X36. 

Since in the presence of many variables it would be very 
inefficient to recompute all the separators of X7 and X36, we 
strengthen the FCI collider test by double checking whether adding 
X32 to the current separator Sep(X7,X36) makes X7 and X36 
dependent: X7 ⊥/  X36 | X39,X32. (If X32 were a true collider, 
conditioning on it would d-connect X7 and X36.) If however, X7 
and X36 remain independent, we cannot safely declare X32 a 
collider. 

Definition (strong collider test) For X ∗−∗ Y ∗−∗ Z, Y passes the 
strong collider test iff Y∉Sep(X,Z) and X ⊥/  Z | Sep(X,Z) ∪ {Y}, 
while   Y passes the strong non-collider test  iff   Y∈Sep(X,Z)  and 
X ⊥/  Z | Sep(X,Z) \ {Y}. 

The strong non-collider test is dual to the strong collider test: we 
double check whether removing Y from the separator Sep(X,Z) 
makes X and Z dependent (as it should if Y were not a collider). If it 
doesn’t, we refrain from declaring Y a non-collider. 

Collider anomalies that are removed by the stronger definition of 
(non)collider are called reducible. The others are called irreducible. 

Definition (irreducible collider anomaly) An irreducible collider 
anomaly is a pair of strong colliders   X1 ∗−> Y <−∗ X2   and  
Z1 ∗−> Y <−∗ Z2   such that   Xi ∗−> Y <−∗ Zj  is a strong non-
collider for some i,j∈{1,2}. 

Our constraint-based algorithm QFCI works as follows. 

QFCI 
1. Initialize the undirected graph by computing 
unconditional independencies 
start with an empty PAG 
for all pairs of variables X,Y 

perform the unconditional independence test X ⊥ Y and set 
pu(X,Y) to its p-value1 and p(X,Y) = pu(X,Y)2 
if pu(X,Y) < α (the test failed w.r.t. the significance level α) 

add an undirected edge X ο−ο Y to the PAG 
else (pu(X,Y) ≥ α, i.e. the test succeeded) 

set Sep(X,Y) = ∅  
2. Refine the undirected graph by conditional independence 
tests 
for k = 1..kmax (consider conditioning sets of increasing size) 
                                                                 
1 pu(X,Y) will be used later to quantify the degree of unconditional 
correlation of X with Y. 
2 p(X,Y) will be the largest p-value of a conditional independence test 
performed so far on X and Y:  p(X,Y) = maxS p_value(X ⊥ Y | S). We use 
p(X,Y) to quantify our confidence in the undirected edge X∗−∗Y. 
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for all undirected edges X ο−ο Y (in decreasing order of their 
labels pu(X,Y), i.e. increasing order of the associated 
unconditional correlations) 

let N = neighbors(X) ∪ neighbors(Y) 3 
if |N| ≥ k 

for all subsets S ⊆ N of size k (constructed by adding k 
nodes Z∈N to S in increasing order of their minimal p-
labels4 min{pu(Z,X), pu(Z,Y)}) 

perform the conditional independence test X ⊥ Y | S 
and let p be its p-value 
if p ≥ α (the test succeeded, i.e. S is a separator) 

delete the undirected edge X ο−ο Y 
set Sep(X,Y) = S and p(X,Y) = p 
break 

else if p > p(X,Y) then set p(X,Y) = p  
(i.e. set p(X,Y) to the maximal p-value of the  
X ⊥ Y | S  tests performed so far) 

3. Search for potential colliders and non-colliders 
for all variables Y 

for all pairs X,Z of non-adjacent neighbors of Y 
if X ∗−∗ Y ∗−∗ Z passes the strong collider test  

add the positive assertion X ∗−> Y ∧ Z ∗−> Y : cf 
with confidence factor  
cf = p(X,Z)(1−pd)(1−p(X,Y))(1−p(Y,Z)), where  
pd = p_value(X ⊥ Z | Sep(X,Z) ∪ {Y}) < α is the p-value 
of the failed independence test performed during the 
strong collider test5 

else if X∗−∗Y∗−∗Z passes the strong non-collider test 
add the negative assertion ¬ (X ∗−> Y ∧ Z ∗−> Y) : cf 
with confidence factor  
cf = p(X,Z)(1−pd)(1−p(X,Y))(1−p(Y,Z)), where  
pd = p_value(X ⊥ Z | Sep(X,Z) \ {Y}) < α is the p-value 
of the failed independence test performed during the 
strong non-collider test 

4. Eliminate collider anomalies 
for all pairs of positive assertions  

X1 ∗−> Y ∧ X2 ∗−> Y : cf1  and  Z1 ∗−> Y ∧ Z2 ∗−> Y : cf2 
if there exists a negative assertion  

¬( Xi ∗−> Y ∧ Zj ∗−> Y ) : cf  for some i,j∈{1,2} 
remove these positive and negative assertions 

5. Constraint propagation of assertions 
repeat  

propagate assertions (using the propagation rules below) 
until no more propagations are possible 
remove potential inconsistencies 

The worst-case complexity of the algorithm is exponential in the 
number of variables n, because in principle it has to consider all 
subsets of variables as conditioning sets (there are 2n-2⋅ n(n-1)/2 
such subsets). Fortunately however, genetic networks typically have 
small in- and out-degrees, so that searching for separating subsets S 
in increasing order of their size S will avoid many unnecessary 
                                                                 
3 For simplicity, we do not reproduce here the more complex determination 
of a complete set of candidate separators used in FCI (based on Possible-D-
Sep), which might not be reliable for small sample sizes. 
4 i.e. in decreasing order of their maximal unconditional correlations 
  max{|ru(Z,X)|, |ru(Z,Y)|}. 
5 Note that  p(X,Z) = p_value(X ⊥ Z | Sep(X,Z)) ≥ α and  
   p(X,Y) =  maxS p_value(X ⊥ Y | S) < α. (Similarly, p(Y,Z) < α.) 

(and unreliable) CI tests. Thus, in practice the run-time is 
dominated by the independence tests conditional on size 1 subsets.  

A further heuristic, but very effective improvement restricts the 
search for separator subsets S among the direct neighbors of the 
nodes to be separated. Thus, since we initially start with a 
completely connected graph, it is essential to reduce the number of 
direct neighbors of nodes as quickly as possible. This is achieved by 
our ordering heuristic which tries to separate the pairs of variables 
(X,Y) in increasing order of their unconditional correlation |ru(X,Y)|. 
This heuristic assumes that (unconditionally) less correlated 
variables will be easier to separate conditionally. Scheduling 
independence tests that are more likely to succeed earlier reduces 
node neighborhoods as quickly as possible, thereby reducing the 
number of candidate neighbors in the later phases. 

Quantitative information is also used in phase 2 when exploring 
potential separator sets S for a pair of nodes (X,Y). Variables Z with 
a higher (unconditional) correlation with one of X or Y are more 
likely to be true neighbors (as opposed to just temporary neighbors 
at this stage of the algorithm6) and are selected with priority as 
members of S. 

The search for colliders in phase 3 employs the strong collider 
and non-collider tests. But since even these stricter tests may not 
eliminate all collider anomalies, we need to explicitly remove the 
colliders involved in such anomalies.  

To allow a more precise evaluation of the results, the discovery 
of potential colliders and non-colliders produces assertions labeled 
by confidence factors (based on quantitative information from the 
independence tests). 

Definition (assertions) Assertions can be either positive 
X ∗−> Y ∧ Z ∗−> Y : cf             (p2) 
X ∗−> Y : cf                 (p1) 

or negative 
¬ ( X ∗−> Y ∧ Z ∗−> Y ) : cf            (n2) 
¬ X ∗−> Y : cf                (n1) 
Assertions of the form (p2), (p1), or (n1) are called definite, 

while those of the form (n2) are called disjunctive (since they are 
equivalent to ¬ X ∗−> Y  ∨  ¬ Z ∗−> Y  : cf). 

A positive assertion of the form (p2) means that we are confident 
with degree cf that both arrowheads at Y (X ∗−> Y and Z ∗−> Y) 
should appear in the partial graph. A negative assertion of the form 
(n2) means that the arrowheads X ∗−> Y and Z ∗−> Y cannot both 
appear in the partial graph.  

Collider anomalies are inconsistencies in the assertions. Under 
the usual assumptions (such as faithfulness and the representability 
of the observed JPD by a single graph model), the most likely 
explanation for such inconsistencies is the small sample size, which 
cannot exclude several potentially conflicting models.  

While some anomalies disappear when using our stronger 
(non)collider test, the remaining irreducible ones need to be 
eliminated by removing the conflicting assertions (phase 4). 

The remaining assertions, which are now guaranteed to be 
consistent, are subsequently propagated in phase 5. 

Propagation (for example of Z ∗−> Y with ¬(X ∗−>Y ∧ Z ∗−> Y)) 
can produce  definite (unary) negative assertions of  the  form  
¬ X ∗−> Y, which can be automatically converted to X ∗−− Y (recall 
that an ‘>’ arrowhead into Y means that Y is not an ancestor of X, 
                                                                 
6 Recall that initially, nodes may be connected to many more other nodes 
than their direct neighbors. 



 

 
 
 
 

 

while an ‘−’ endpoint says that Y is an ancestor of X). But in the 
absence of hidden selection variables, we cannot have edges with 
‘−’ endpoints at both ends, so X ∗−− Y could be immediately 
turned into X <−− Y. Unfortunately, placing new ‘<’ arrowheads 
may lead to new inconsistencies, 7 for example involving U ∗−> X 
<−− Y and the negative assertion (non-collider) ¬(U ∗−> X <−∗ Y ). 
To make things even more complicated, the arrow X <−− Y may 
propagate another arrow, for example V <<<<−−−−−−−− X <−− Y before the 
discovery of the inconsistency with U ∗−> X. 

Using the terminology of non-monotonic logics, we adopt a 
“skeptical” attitude towards inferring new edge orientations, which 
amounts to withholding from propagating an arrowhead that may be 
involved in a conflict with another one. As all assertions involved 
in such potential inconsistencies must be eliminated, we have to 
keep track of the inferences (propagations) made from these 
assertions, in order to enable their subsequent removal. In our 
previous example, removing the arrowhead at X in X <−− Y  will 
have to invalidate the V <−− X arrow as well (of course, only if  
V <−− X has no other “justification”). 

More generally, we attach a “justification” to each assertion, 
representing the successive insertions of arrowheads (for avoiding  
X −−− Y edges) that have lead to placing the current arrowhead. 

Definition (justification of an assertion) The justification of a 
primitive assertion (i.e. an assertion generated in phase 3 and based 
on CI tests) is empty. The justification of a derived assertion (i.e. an 
assertion propagated in phase 5) is a set of atomic labels j = {l1, l2, 
..., ln} representing arrowheads placed for avoiding X −−− Y edges. 

We use the notation A : cf :: j  for an assertion A with 
justification j  (empty justifications can be omitted). 

An ATMS could be used to manage assertions and their 
justifications. But the propagation rules in our domain are very 
simple due to the very constrained form of assertions (in the 
following, a and b stand for edge arrowheads of the form X ∗−> Y): 

a ∧ b : cf ⇒ a : cf,   b : cf 
a : cfa :: ja,  ¬(a ∧ b) : cf ⇒ ¬b : cfa⋅cf :: ja 

¬(X ∗−> Y) : cf :: j ⇒ Y −−> X : cf :: j  ∪ {li}      
    (with li a new atomic label) 

An arrowhead inconsistency is treated by the rule: 
a :: j1,  ¬a :: j2    ⇒    remove_inconsistency(j1, j2) 

which  deletes all assertions A :: j with justifications containing j1 or 
j2: j ⊇ j1  (but only if j1 ≠ ∅)  or j ⊇ j2  (but only if j2 ≠ ∅). 

Finally, after all potential inconsistencies have been removed, we 
aggregate the confidence factors for edge endpoints as follows 
(since a given edge endpoint can be supported by several assertions 
with different confidence factors):  cf(a) = max{ cfi | a : cfi }.  
(Assertions with confidence factors below a given threshold, e.g. 
α=0.05, are automatically discarded.) 

Note that the rule that orients edges for avoiding the formation of 
new colliders (rule R1 in [4], or rule G(ii) in [6]):  

X ∗−> Y ∗−∗ Z   ⇒   X ∗−> Y  −−> Z 
is a special case of our propagation of assertions (phase 5).  

Also note that we do not apply the acyclicity rule (R2 from [4], 
or G(i) from [6]), since genetic networks are potentially cyclic. 
However, dealing with both cycles and latent variables is an open 
research problem, so we do not aim at completeness in the presence 
of cycles [5]. 
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3 EVALUATION  
We evaluated QFCI on synthetic datasets similar to the extreme 
conditions encountered in real-life microarray datasets, such as the 
Garber lung cancer data [3]. The main problem is related to the low 
power of conditional independence tests for such small sample sizes 
(N=73), for which it is generally impossible to discriminate between 
true but weak dependencies and nonzero fluctuations of correlations 
of otherwise independent variables. Thus, although we cannot 
expect to obtain a perfect model of the data, we would still like to 
recover at least the stronger dependencies in the data, while 
minimizing the number of wrong edges.  

In the following we compare QFCI with the original FCI 
algorithm from the TETRAD IV distribution [8] and WinMine [9] 
on datasets of size 73 (the same as in [3]) sampled from synthetic 
linear models generated from Erdos-Renyi random graphs with 850 
nodes and 2000 edges (corresponding to a biologically plausible 
average degree of 4.7).  

Since expression levels in microarray measurements are 
continuous variables, we have chosen to employ CI tests based on 
the Fisher z transform of partial correlations. Strictly speaking, 
these tests are only correct if the variables are jointly normal, but 
they are still often useful for non-normal distributions as well. The 
alternative of discretizing the variables seems worse, especially in 
view of the small sample sizes, as it would further reduce the power 
of the tests. (The majority of scoring-based implementations use 
discretization of the continuous variables.) 

The following Table presents the results of FCI, QFCI and 
WinMine using their default parameters (FCI and QFCI have a 
single parameter, α=0.05),8 except for WinMine, which was run in 
the ‘acyclic’ mode. The Table contains the averages and standard 
deviations of the following edge counts corresponding to 5 runs of 
the algorithms on 5 different Erdos-Renyi random graphs with 850 
nodes (variables) and approximately 2000 edges: 

MEAN (STD)   
5 networks FCI (Tetrad) QFCI & Tetrad QFCI QFCI & 

WinMine WinMine 

Original edges (c+m) 1995.6 (3.3)  1995.6 (3.3)  1995.6 (3.3) 

Total induced edges (e) 828.4 (13.7)  824.2 (16.8)  624.6 (23.9) 

Correct skeleton (c) 707 (25.6) 685.4 (27.2) 710.2 (30.6) 422.2 (16.6) 473.4 (11.6) 

c/e 85.4% (1.9)  86.2% (1.8)  75.8% (0.5) 

Compatible orientation (o) 423.8 (28.2) 405 (29.5) 663.6 (20.6) 221.8 (6.5) 267.4 (14.3) 

o/c 59.9% (1.1)  93.4% (0.7)  56.5% (1.2) 

--> 115.4 (17.4)  57.6 (9.1)  267.4 (14.3) 

o-> 134 (12.6)  242 (21.8)   

o-o 174.4 (14.9)  364 (13.4)   

incompabible orientation (i) 283.2 (29.5) 35.2 (13.3) 46.6 (15.1) 9.6 (4.3) 206 (15.6) 

i/c 40.1% (1.2)  6.6% (0.5)  43.5% (1.3) 

--> 35.8 (10.3)  6.4 (4.8)  206 (15.6) 

o-> 60.6 (6.0)  21 (8.2)   

<-> 181.6 (21.1)  19.2 (5.0)   

--- 5.2 (1.5)     

Wrong skeleton (w) 120.8 (19.3) 87.6 (17.3) 114 (19.5) 10 (4.1) 151.2 (26.5) 

w/e 14.6% (1.4)  13.8% (1.2)  24.2% (1.1) 

Missing edges (m) 1288.6 (25.1)  1285.4 (30)  1522.2 (13.5)

m/(c+m) 64.6% (0.5)  64.4% (0.5)  76.3% (0.5) 

- e: the total number of induced edges 
                                                                 
8 We have performed experiments on many more random graphs with 
various parameter settings and obtained similar results for all of these.  



 
 
 
 
 

- c: the number of edges which are correct if we disregard their 
orientation (“correct skeleton”) 

- w: the number of wrong edges induced by the algorithms 
(induced edges which do not occur in the original model) 

- m: the number of edges from the original model that are missing 
from the induced graph 

- o: edges having an orientation compatible with the original edge 
(for example, o−> is compatible with −−>, but not with <−−) 

- i: the number of edges which appear in the original graph, but 
only with an incompatible orientation. 
The columns marked “QFCI & Tetrad” (“QFCI & WinMine”) 

contain the overlaps between QFCI and Tetrad (respectively 
between QFCI and WinMine) in the corresponding categories.  

Given the very small sample size, the large number of missing 
edges is not surprising.9 Nor is the fact that FCI and QFCI induce 
more or less the same “skeleton” (i.e. undirected graph10). However, 
even with respect to the skeleton, QFCI and the original FCI 
perform significantly better than WinMine (the proportion of wrong 
edges induced by WinMine is already larger than that of QFCI and 
FCI, while the number of correct edges is much lower 473 < 710). 

The large number of missing edges is not a fatal drawback in our 
bioinformatics application, in which almost nothing is known about 
the circuitry of the genes involved. The discovery of even only the 
strongest dependencies is thus still a significant step forward.  

The most important improvement of QFCI w.r.t. the other 
algorithms is obtained in the orientation of edges. Indeed, while 
only 59.9% of the correct FCI edges had also correct (or at least 
compatible) orientations, 93.4% of the edges induced by QFCI had 
a compatible orientation. WinMine orients edges almost at random. 

The above Table also presents a more detailed breakdown of the 
correctly and wrongly oriented edges. Not very surprisingly, about 
half of the compatible edges remain completely unoriented (o−o). 
Our results confirm the observation of Spirtes et al. [6] that FCI’s 
error rate is significantly higher w.r.t. edge orientations than 
regarding the skeleton (of course, FCI was not designed to cope 
with such small sample sizes). Thus, overall, QFCI seems to fare 
better than existing algorithms, especially w.r.t. edge orientation.  

Note that the precise nature of our biological problem seems to 
favour a constraint-based approach over a scoring-based algorithm 
based on model selection. Indeed, a scoring-based method will keep 
adding edges until no further improvement of the score can be 
achieved. But this does not mean that the given data necessarily 
implies all the edges induced, nor that their orientations reflect the 
true causal directions of influence. On the other hand, a constraint-
based algorithm like QFCI will return only edges that have a high 
probability of occurring in all alternative models of the given data. 
Such an approach may miss many weak dependencies (which 
cannot be discriminated from noise with such small sample sizes), 
but the edges returned tend to be correct. Furthermore, directed 
edges can be interpreted as causal influences. 

4 RELATED WORK AND CONCLUSIONS 
The approach in [7] also deals with improving the edge orientation 
phase of CI-based algorithms. The main difference w.r.t. our 
approach is that [7] uses a context-dependent relative scoring 
                                                                 
9 A more in-depth analysis revealed that these tend to be edges x�y 
corresponding to parents x with small influence on y in the given dataset. 
10 Refining the skeleton inference is not the main concern of this paper. 

function for determining colliders (i.e. one that scores a collider 
based on the orientations of all the other edges in the graph), which 
only works well with a reasonably complete model and in the 
absence of latent variables. (This is why the algorithm in [7] 
reorients all edges anew after each single edge addition – this 
wouldn’t have been necessary if edge orientations would not be 
very sensitive to the incompleteness of the intermediate models.) 
On the other hand, while [7] attempts to obtain complete statistical 
models, we are aiming at determining the directions of influences 
that are fully determined by the data (and thus admit a causal 
interpretation) independently of the other orientations (to avoid the 
propagation of errors) in highly incomplete models with potentially 
many latent variables. (Incompleteness is due to the few and noisy 
samples and to the much stronger requirement of identifying the 
original edges and their orientations rather than just a statistically 
equivalent model of the data. This is – in non-monotonic logic 
terminology – a “skeptical” approach to recognizing features of the 
model, which requires, among others, context-independent collider 
recognition.)  
 The BNPowerConstructor [1] also employs quantitative 
information related to the independence tests in a constraint-based 
algorithm. However, extending it to deal with latent variables or 
small samples seems extremely difficult, if not inherently 
impossible.  
 We have also applied QFCI on the Garber lung cancer dataset 
[3] and obtained very encouraging results from a biological 
viewpoint. The Supplemental Figure online at 
http://www.ai.ici.ro/ecai04/SupplFig.pdf depicts the neighbours (up 
to depth 5) of the discrete variable associated to the ‘small cell’ 
lung cancer subtype. It is particularly striking that QFCI finds 
‘small cell’ connected to a single gene of unknown function, 
INSM1 (insulinoma-associated 1), which is known to serve as a 
marker for lung tumours of neuroendocrine differentiation. 
Moreover, all of the genes hand-picked by human experts in Garber 
et al. [3] in their discussion of the ‘small cell’ subtype are very 
close neighbors in our network: 7B2 (SGNE1), glutaminyl cyclase 
(QPCT), L-myc (Hs.92137) and the neuronal differentiation marker 
achaete-scute homolog (IMAGE:1416420), while several others 
appearing in our network have unknown functions and should be 
further investigated. The network obtained could represent a good 
starting point for elucidating the details of the genetic networks 
involved in lung carcinoma by enabling much better targeted 
experiments.  
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