Towards a unified architecture for knowledge representation and
reasoning based on terminological logics *

Liviu Badea
AT Research Department
Research Institute for Informatics

8-10 Averescu Blvd., Bucharest, ROMANIA

e-mail: badea@roearn.ici.ro

Abstract

This paper presents a unified architecture for
knowledge representation and reasoning based
on terminological (description) logics. The nov-
elty of our approach consists in trying to use
description logics not only for representing do-
main knowledge, but also for describing beliefs,
epistemic operators and actions of intelligent
agents 1n an unitary framework. For this pur-
pose, we have chosen a decidable terminological
language, called ALC,4 4 a(c), Whose expres-
sivity is high enough to be able to represent
actions and epistemic operators corresponding
to the majority of modal logics of knowledge

and belief.

Additionally, we describe practical inference al-
gorithms for the language ALC, 4 1 14(c) which
lies at the heart of our Reg AL ' knowledge rep-
resentation system. The algorithms are sound
and complete and can be used directly for de-
ciding the validity and satisfiability of formu-
las in the propositional dynamic logic (PDL)
by taking advantage of the correspondence be-
tween PDL and certain terminological logics

[10].

1 Term subsumption languages

Term subsumption languages ? (TSLs) are descendants
of the famous KL-ONE language [4] and can be viewed
as formalizations of the frame-based knowledge represen-
tation systems.

The relationship between TSLs and logic is analogous
to the relationship between structured and unstructured
programming languages. Indeed, the TSLs impose a cer-
tain discipline in the logical structure of a formula (con-
cept) in the very same way in which the structured pro-
gramming paradigm imposes a discipline in the control
structure of a program. Although they somehow restrict

*This research was partially supported by the European
Community project T2 KADS (CP-93-7599).
'The id(C) - Regular closure of the ALC language.

% Also known as terminological (or description) logics.

the expressivity of the description language, TSLs are
most of the time preferable to general logic because of
their increased understandability and usability in build-
ing practical knowledge bases. Also, as opposed to gen-
eral logic, certain TSLs may possess decidable inference
problems while retaining a fairly high expressivity which
enables them to represent complex ontologies.

The terminological description language usually pro-
vides a variety of concept and role constructors, includ-
ing the boolean operators (conjunction M, disjunction LJ,
and negation —). Value- (VR:C), existential- (3R: ')
and number restrictions (<, R, =, R, >, R), role-value
maps (Ry C R2) and structural descriptions (C' : R) are
some of the most important concept constructors. We
could also mention the following role constructors: id(C')
(the restriction of the identity role to the concept C'),
R™! (role inverse), R|C' (range restriction), Rj o Rs
(role composition), R* (reflexive-transitive closure) and
Ry < Rs (bindings used in structural descriptions).

Not all of the above constructors are independent. For
example, role-value maps and structural descriptions can
be expressed in a language that admits role negation 3
as:

Ri1C R» V(Rl M —|R2): 1L
C:R = 3R:C, where

R = Ri<@QinN...MR, <@,
R; <Q; = _'(Rio_'Qi_l)'

Role-value maps and structural descriptions usually
lead to very expressive but undecidable languages [12, 8].
These observations suggest the following conjecture:
“The only cause of undecidability of a reasonably expres-
sive terminological language is the irreducible presence of
role negation in the language.” Note that concept nega-
tion is usually harmless w.r.t. decidability, as opposed
to role negation which usually leads to undecidable lan-
guages [9].

®and also other common concept and role constructors

2 Complete decision algorithms for the
terminological language ALC, ., 4+ i(c)

The terminological language we are using in our knowl-
edge representation system RegAL is ALC,cq 4 id(c),
the regular closure of the well-known language ALC of
Schmidt-Schaufl and Smolka [11] extended with the role
constructor id(C).

In the following, we shall present complete inference
algorithms * for ALCrcq 4 ia(c)- By taking advantage of
the correspondence of ALC,y 4 iq(c)y with the proposi-
tional dynamic logic (PDL) of programs [10], we shall
be able to apply our algorithms for deciding the validity
and satisfiability of formulas in PDL too.

As far as we know, there exists a single TSL sys-
tem with complete inference algorithms and a reason-
ably high expressivity, namely XRZS [2]. The termino-
logical language ALCFNR provided by KRZS extends
the standard language ALC with attributes (functional
roles), number restrictions and role conjunctions.

The language ALC,c4 4 a(c) We are using in Reg AL
was chosen having somewhat different goals in mind,
namely to be able to represent procedural knowledge,
actions and epistemic operators in our descriptive logic.
Number restrictions and role conjunctions wouldn’t have
been very helpful in this context.

The satisfiability (consistency) of a concept in our ter-
minological language can be tested by using a variant of
the well known tableaur calculus, adapted to this specific
context [6]. Starting from a formula which implicitly as-
serts the satisfiability of the given concept, the calculus
tries to construct a model of the respective formula. In
doing so, it may discover obvious contradictions (clashes)
and report the inconsistency of the original formula, or
it may come up with a complete clash-free model, thus
proving the satisfiability of the formula. This method
is directly applicable only if the language possesses the
finite model property (which is fortunately the case with
ALCcq +ia(c))-

The tableaux calculus combines two different pro-
cesses. The first is analogous to a refutation theorem
prover which tries to discover contradictions, while the
second concentrates on building models. In [6] a vari-
ant of the tableaux calculus (called rule-based calculus
operating on constraints) is used for obtaining complete
decision procedures for the satisfiability problem in the
languages ranging between ALC and ALCFNR. On
the other hand, Franz Baader [1] succeeds in obtain-
ing a practical decision algorithm for the regular closure
ALCreg of ALC. As far as we know, no practical decision
algorithms for languages more expressive than ALC,.,
are known.

Adding the role constructor id(C) to the language
ALC,eq increases the expressivity but introduces sub-
stantial complications in the inference algorithms. These

4The validity and satisfiability problems in AL g 4 id(C)
are known to be decidable (more precisely, EXPTIME-

complete).

complications are mainly due to the fact that existen-
tial restrictions are no longer separable in the language
A*Ccreg +¢d(C)-

The complete satisfiability checking algorithm is a con-
sequence of the reduction and cycle-characterization the-
orems presented in [3]. The idea of the algorithm con-
sists in reducing the satisfiability of a given concept to
the satisfiability of several simpler concepts. This reduc-
tion process can be alternatively viewed as a process of
model construction. In order to ensure the termination
of the algorithm, we have to check for the presence of
cycles at each reduction step. In case a cycle has been
detected, the cycle-characterization theorem is used to
determine its nature. As in the case of ALC,.4, only the
good cycles lead to a model, the bad cycles being merely
shorthands for infinite reduction chains.

The satisfiability testing algorithm, presented in fig-
ure 1, involves a preprocessing step in which the following
computations are performed:

1) The concept C to be tested is brought to the nega-
tion normal form (nnf). The main difference viz.
ALCyeq consists in having to consider the concepts
I within id(I) roles too. This has to be done de-
pending on the context in which the role id(I) ap-
pears (i.e. within an ¥V or a 3 restriction) in order
to facilitate the extraction of the proper conjuncts
of C'. More precisely, if id(I) appears in an 3 re-
striction, then rnjfz(id(C)) = id(nnf(C)), and if
it occurs in an V restriction, then rnfy(id(C)) =
id(—nnf(—-C)).

2) Since comparisons between role expressions R oc-
curring in C' are quite frequent (especially when
testing the existence of cycles), it seems to be a
good idea to bring the roles R to a canonical form.
This can be done by constructing for each role R the
corresponding deterministic finite automaton DFA
and by minimizing the disjoint union of these au-
tomata. The initial states of the resulting minimal
deterministic finite automaton mDFA represent the
canonical forms of the roles occurring in C'.

3) Finally, the procedure roles_to_mStates replaces the
roles occurring in C' with the corresponding states
of the mDFA. The replacements affect the concepts
I inside #d(I) transitions of the mDFA too.

In the following, we shall make no distinction between
a role, its corresponding state in the mDFA and the lan-
guage accepted starting from this state. Also, the fol-
lowing substitutions are performed for all value- and ex-
istential restrictions in which ¢ € R (or, equivalently, the
state of the mDFA corresponding to R is final):

VR:Ca — CanV(R\{e}):Ca
dR:Ce — CeUI(R\ {e}):Ce.

The actual satisfiability testing algorithm extracts a
conjunct of the given concept at a time, removes the
separable existential restrictions and subsequently tries
to determine the satisfiability of the remaining nonsep-
arable conjunct.

satis fiable(C)

uCl/);f{”g(@C) sat_separable_ emsts(H dRe;: Ce; M HVRak Cap,L) > NS_FE
forall roles R occurring in C' // NS_E = conjunct of nonsepamble 3 restrictions
DFA « roleto_DFA(R) NS E«T
uDFA < DFAUuDFA forall 3Re: Ce in [[3Re;: Ce;
O __J _
mDF A — minimize(uDF A) sat_exists(IRe: CeM[[VRay: Cay, L)

C" « roles_to_mStates(C")
sat(C",[])
a

k
or // nondeterministic choice

NS_E «+ dRe:CeM NS_E

O
sat(C, L) return NS_F
Conj + conjunct(C) O
sat_conjunct(Conj, L)
O sat_nonseparable_ emsts(H C;MNS_EN HVRak Cag, L)

C—IIC I‘IHVRak Cay

forall EINeRe:C'e m NS_E

sat_conjunct(Conj, L) if id(I) € Re then

if cycle(Conj, L, GoodBad) then C %4([nce)nc
if GoodBad = good then succeed else fail S]
else fail or // nondeterministic choice
else if id(I)~tRe\ {e} # 0 then
Conj + proper_conjunct(Conj) C %4[[M3INe(id(I)~" Re \ {e}): Ce] nc
assign a new unique label Ne to all else fail
Jre-dabel Re: Ce restrictions = c
//C'onj_HC’ I_IHEINeRe] C'eJI_IHVRak Cayg - sat(C’, L)
if [[C; contams a clash (i.e. Ci, = —|C' ,) then
fZail
else

// solve the separable 3 restrictions
// and collect the nonseparable ones
NS_E + sat_separable_exists([[ARe;: Ce; sat_exists_solved(C3, L)

//63 = HE:CeI‘IHVEk:Cak

k
if there exists an R € Re such that R # id(-) then

k
// solve the nonseparable 3 restrictions / 1 .
sat_nonseparable_exists([[C;MNS_E Ca’ 1:[Cay 1 Il Y(R™ Ray \ {e}): Ca

_ J
NJ[VRay: Cak, [Mnode(Conj)|L])

o 7 RERay R_lRa:\{s}¢ﬂ)
NJ[VRay: Cak, [Mnode(Conj)|L]) // solve the 3 restriction
k sat(CenCd’, L)
= else fail
= O

sat_exists_post@ed(ag, Ly
// C3=3"Re:CeM[[VRay: Cay
let R™'Re be the targef state of the transition
Re % R='Re with R # id(")
or // nondeterministic choice Ca e I Caxl I1 V(R™ Rax \ {e}): Ca

k k
t_exists_postponed(C3, L RERay R=1 Ray \{}0
O sal-exists-postponed(C'3, L) // postpone the 3 restriction
sat(Ca' M3Ne(R™'Re \ {e}): Ce, L)
O

sat_exists(C3, L) B
sat_exists_solved(C'3, L)

Figure 1: The satisfiability testing algorithm for con-
cepts in ALC,cq 4 id(c)

Definition 1 A restriction IRe;: Ce; s called sepa-
rable w.r.t. the proper conjunct ® Cn = [L,Cin
Hj JRe;: Ce; M], YRay:Cay iff the concept Ugj =
Elmjzgejl_lnk VRay: Cay, is satisfiable. The proper con-
gunct Cr atself is called nonseparable iff none of its
dRe;: Ce; restrictions is separable.

There are two possibilities of proving the satisfiability
of the concept Ugj, namely by solving the existential
restriction, or by postponing it.

In a similar way, the (nonseparable) existential re-
strictions from a nonseparable conjunct can be solved or
postponed w.r.t. id(]) transitions, but they cannot be
separated because of possible interactions between the
concepts [.

In order to be able to determine whether a given exis-
tential restriction has been obtained by postponing or by
solving another existential restriction involved in a cy-
cle, we shall attach a unique label N to each existential
restriction 3V Re: Ce.

All existential restrictions are initially unlabeled.
An unlabeled restriction 37°-/%%¢! Re: C'e receives a new
unique label N; only when it reaches the “top level” of a
conjunct® Cp = IL C'Z'I_IHj N Rej: Ce; M, YRag: Cag.

When an existential restriction is postponed, its label
1s conserved and can be used to track an uninterrupted
chain of postponings. Such a chain cannot correspond to
a model unless at least one of the existential restrictions
in the chain is eventually solved.

In the following, we shall see how the labels can be
used to determine the nature of cycles. Let Cr and

Uln be the two concepts involved in a cycle. Cpr and

Cp are equal, except maybe the labels N; and NJ’» of

the existential restrictions (j = 1,...,n). Such a cy-
cle will be represented by the label-correspondence table

(%% %% %7), each column of this table be-
1 2 e n

ing related to equal existential restrictions Vi Re: Ce =

FNiRe: Ce from Cr and Uln respectively. Because 3 re-
strictions get unique labels when they reach the top level
of a conjunct, we have N; # N; and N/ # N/ for i # j.
The following theorem can be used in determining the
nature of a cycle.

Theorem 1 (cycle characterization)

A cycle represented by the label correspondence table
above is bad (i.e. it does not induce a model} iff the
label correspondence table contains a cyclic permutation,

°In AL g 4 id(c), it is important to distinguish between
semple and proper conjuncts. The simple conjuncts are the
ones obtained by ignoring possible id(I) roles that could oc-
cur in the given concept C'. The proper conjuncts can be
obtained from the simple ones by taking into account the im-
plicit disjunctions induced by possible id(]) transitions of
roles Ra occurring in value restrictions VRa:Ca. For in-
stance, Vid(I):C =—=IuC.

6This happens in sat_conjunct after extracting a proper
conjunct from a simple one.

i.e. there exists a subsel of indices {j1,ja,...,ju} C
{1,...,n} such that Nj, = Nj , Ny, = Ni ..., Nj, , =
NI, Nj, = N},

1

3 Representing epistemic operators in
terminological logics

Since we are aiming at a unified architecture for knowl-
edge representation based on terminological logics, we
shall show that TSLs are powerful enough to represent
epistemic operators corresponding to the majority of
modal logics of knowledge and belief. Not only is it
possible to describe in Reg AL the knowledge/beliefs of
several agents, but the different agents could have dif-
ferent epistemic operators with distinct modal proper-
ties so that we could study, for example, the interaction
between an agent whose knowledge is necessarily true
and another agent whose beliefs are just consistent and
believed to be true, but not necessarily true in reality.
One could even have more than one epistemic operator
attached to the same agent in order to distinguish its
beliefs from its knowledge.

Of course, in RegAL epistemic operators can be
nested in an unrestricted fashion and they could even
mention actions and plans. Also, the actions of some
agent could modify the knowledge or beliefs of another
agent so that it becomes possible to study the commu-
nication between agents in a unified framework.

In modal logic, an agent can imagine a set of possible
worlds linked with the real world by the accessibility re-
lation. The facts p known by the agent are facts which
are true in all possible worlds.

Modal formulas are constructed by using the usual
logical connectives together with the modal operators
O (necessity) and < (possibility). The necessity modal
operator O will be interpreted in the following as an
epistemic operator, the formula Op being understood as
“the agent knows the fact p”.

Because of the fact that there is no unique interpre-
tation of the modal notions of “necessity”, “possibility”,
“knowledge” | “belief” etc., there exists a large variety of
modal systems which can be distinguished by the proper-
ties of the accessibility relation. Imposing, for instance,
the reflexivity of the accessibility relation p in the modal
system T is equivalent to requiring the truth of knowl-
edge, while imposing the seriality of p leads to the con-
sistency of knowledge. The table 1 presents some of the
most common modal axioms together with the proper-
ties of the accessibility relation they induce.

The most common modal systems are defined by com-
binations of the modal axioms from table 1. They can
be embedded in a term subsumption language by using
satisfiability preserving translations into the TSL (see
also [13]). In this way, problems formulated in terms
of (modal) epistemic operators can be reduced to prob-
lems in a TSL which can be solved using the inference
algorithms from the preceding sections.

The general translation scheme from a modal system

Name Modal axiom Pro.pe.r.ty of thg Comments
accessibility relation
valid in every standard Kripke’s axiom
K. D(p—¢) = (Op = Bg) Kripke frame (normality axiom)
D. OT serial deontic axiom
T. Op —p reflexive knowledge axiom
O . .
B. p—HOp symmetric Brouwer axiom
P — D—|D—|p
4. Op — OOp transitive positive mtrospectzon
axiom
O .)))
5. Op —» OOp cuclidian negative introspection
—-Op — O-0p axiom
. beliefs are believed
U. O(Op — p) almost reflexive to be true
(A.) 0(<C0p — p) almost symmetric

Table 1: Major modal axioms

into a TSL is the following (p’ is the TSL concept corre-
sponding to the modal formula p):

p — p (for atomic formulas)
—p o
pAg — p'nq
pVg — puUq
Op +— VL(R):p
Op — AL(R):p.

Note that the modal operators O and < are translated
into value- and existential restrictions in which roles of
the form L£(R) occur. Here £ is the particular modal
system and R an arbitrary role name representing the
agent. The role £(R) stands for the accessibility rela-
tion and possesses all the properties this relation should
have in the system £. Thus, we could read the formula
VL(R):p' as: “the agent R knows the fact p’ w.r.t. the
modal system £” (£ gives us here the type of knowledge).

The table 2 presents the expression of L(R) for the
most important modal logics of knowledge (in which
knowledge is required to be true 7) while the table 3
does the same thing for the modal logics of belief (in
which beliefs are believed to be true). The axioms of
reflexivity T and symmetry B from the modal logics of
knowledge are replaced in the modal logics of belief by
the weaker versions U (almost reflexivity) and A (almost
symmetry) respectively.

Adding the deontic axioms JOLY(R): T or, equiva-
lently, 3L(R): ¢ to the systems OL(R) in table 3 leads
to the deontic systems OLT(R) in which the beliefs are
required to be consistent. Note that

OLY(R) = OL(R) = L(R) o id(q).

“except perhaps in the system K.

| System | Axioms | L(R) |
K. K R
T. KT RUd
S4. KT4 R*
S5. | K15 | (RUR)
B. KTB RUddUR!

Table 2: The accessibility relation £(R) in the modal
logics of knowledge

| System [Axioms | OL(R)/OLT(R) |
OK/OKT. K/KD Roid(q)
OT/OTT. | KU/KDU (RUd) o id(q)
0S4/0S4%. | K4U/KD4U R*oid(q)
0S5/055%. | K45/KD45 | (RUR 'V 0 id(q)
OB/OBT. | KUA/KDUA | (RUidUR) o id(q)

Table 3: The accessibility relations OL(R)/OLY(R) in
the modal logics of belief

The main advantage of our unifying approach is that
the various types of knowledge corresponding to the
aforementioned modal systems can be amalgamated in
a single system. For example, we could describe a multi-
agent system in which the knowledge K; and beliefs B5;
of the agents ¢ can be mixed in an unrestricted fashion.
By attaching a unique role name R; to each agent i, we
can write the epistemic operators corresponding to the
knowledge and belief of agent ¢ in the following way 2

K: = [Ri] = [S4(R,)] = [R}]
B; = [Ti] = [KDAU(Ry)] = [R; o id(g,)].

8In order to simplify the notation, we shall write, in the

following, [R]C instead of VR: C.

where 7; verifies the deontic axiom 3I7;: T, or equiva-
lently, AR} : q;.

The common knowledge and common belief operators
are C = [([[; R:)*] and D = [(I], 7i)] respectively.

Our method of integrating epistemic operators in a
TSL is much simpler and more natural than other ap-
proaches [5, 7] which, on one hand, could deal with only
one single type of knowledge at a time and, on the other,
had to develop special purpose algorithms for treating
the epistemic operators (because the underlying TSL
had a too low expressivity to be able to express epis-
temic operators directly).

4 Representing actions and plans in a

TSL

TSLs can be used not only for representing the domain
knowledge or epistemic operators, but also for describ-
ing actions and plans. In order to develop a theory of
action in TSLs, we shall regard a role of a TSL as an
action which transforms the states = from the extension
of the role’s domain into the states y from the extension
of its range. Thus, the value restriction YR: ' can be
interpreted as the necessary precondition for the action
R to achieve the postcondition C'.

Conditions/facts from our theory of action will be rep-
resented in a TSL by concepts, while actions will be de-
noted by roles. An action A : (In|Ctz|Out) (having In
as deleted preconditions, C'tz as context (preserved pre-
conditions) and Out as created postconditions) can be
described by the following terminological axiom, which
is similar to a total correctness assertion from dynamic
logic ?

In Cte CV3A: (=In 1 Cte N Out)

where YAR: C ¢ 3R: TNVR:C = 3R: CNVR: C.

The planning problem can be stated in the following
way: “Given an initial state represented by the con-
cept Initial, a final state (goal) Final and a repertory
of actions {A;, As,..., Ay}, find a role chain Plan =
Ajy 0 Aj,0...0A4;, (or, more generally, a role term Plan
formed from the roles Aq,..., A, by applying the role
constructors) such that Initial C VAPlan: Final.”

This last equation assures us that the compound ac-
tion Plan is applicable in a state verifying the precondi-
tions Initial and that 1ts application will produce a state
verifying the goals Final.

5 Conclusions

This paper tries to present a unified approach to the do-
mains of knowledge representation and reasoning from
the viewpoint of terminological (description) logics. We
have shown that TSLs are powerful enough to represent
not only the domain knowledge in a particular applica-
tion, but also the epistemic operators, actions and plans

®This similarity should not be surprising since the plan-
ning problem is similar to the problem of program synthesis
starting from input/output specifications.

of a set of interacting agents. Because of our unifying
approach, all these types of knowledge can be combined
in an unrestricted fashion.

In order to support the reasoning involved, we
have chosen a decidable terminological language,
ALCrcq 4 id(c), for which we have developed the key in-
ference algorithms. It should not be surprising that these
algorithms are quite complex, because the underlying
language has a high expressivity.

The resulting system, called Reg AL, is implemented
in ProrLoG and will be used in a very powerful
knowledge-based systems development environment.

References

[1] BaaDER F. Augmenting concept languages by the
transitive closure : An alternative to terminological

cycles. IJCAI-91, pp. 446-451.

[2] BAADER F., HOLLUNDER B. KRIS: Knowledge
Representation and Inference System — System De-
seription. DFKI TM-90-03.

[3] BaDEA Liviu. A unitary theory and architecture for
knowledge representation and reasoning in Artificial
Intelligence (in Romanian) PhD thesis, Bucharest
Polytechnic University, 1994.

[4] BrRacEHMAN R.J., ScamMoLrzZE J.G. An Overview
of the KL-ONE Knowledge Representation System.
Cognitive Science 9 (2) 1985.

[6] Donint F. M., LENZERINI M., NarDI D
SCHAERF A., NurT W. Adding Epistemic Oper-
ators to Concept Languages. Proceedings KR-92,
Boston.

[6] HOLLUNDER B., NUTT W., SCHMIDT-SCHAUSS M.

Subsumption Algorithms for Concept Description
Languages. ECAI-90, pp. 384-353, Pitman, 1990.

[7] Laux A. Integrating a Modal Logic of Knowledge
wnto Termanological Logics. DFKI RR-92-56.

[8] PATEL-SCHNEIDER P.F. Undecidability of Sub-
sumption in NIKL. Artificial Intelligence 39 (1989),
pp. 263-272.

[9] ScHILD Kraus. Undecidability of Subsumption in
U. KIT Report, Technische Universitat Berlin, Oc-
tober 1988.

[10] ScHILD Kraus. 4 correspondence theory for termi-
nological logics: preliminary report. IJCAI-91, pp.
466-471.

[11] ScHMIDT-ScHAUSs M., SMoLKA G. Attributive

concept descriptions with complements. Artificial
Intelligence 48 (1), pp. 1-26, 1991.

[12] ScHMIDT-ScHAUSs M. Subsumption in KL-ONFE is
undecidable. Proceedings KR-89, pp. 421-431.

[13] TuoMINEN H. Translations from FEpistemic into
Dynamic Logic. ECAI-88, pp. b86-588.

